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Abstract

Aerial cinematography is revolutionizing industries that require live and dynamic

camera viewpoints such as entertainment, sports, and security. However, safely piloting

a drone while filming a moving target in the presence of obstacles is immensely taxing,

often requiring multiple expert human operators. Hence, there is a demand for an

autonomous cinematographer that can reason about both geometry and scene context

in real‐time. Existing approaches do not address all aspects of this problem; they either

require high‐precision motion‐capture systems or global positioning system tags to

localize targets, rely on prior maps of the environment, plan for short time horizons, or

only follow fixed artistic guidelines specified before the flight. In this study, we address

the problem in its entirety and propose a complete system for real‐time aerial

cinematography that for the first time combines: (a) vision‐based target estimation; (b)

3D signed‐distance mapping for occlusion estimation; (c) efficient trajectory optimiza-

tion for long time‐horizon camera motion; and (d) learning‐based artistic shot selection.

We extensively evaluate our system both in simulation and in field experiments by

filming dynamic targets moving through unstructured environments. Our results

indicate that our system can operate reliably in the real world without restrictive

assumptions. We also provide in‐depth analysis and discussions for each module, with

the hope that our design tradeoffs can generalize to other related applications. Videos

of the complete system can be found at https://youtu.be/ookhHnqmlaU.
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1 | INTRODUCTION

Manually operated unmanned aerial vehicles (UAVs) are drastically

improving efficiency and productivity in a diverse set of industries

and economic activities. In particular, tasks that require dynamic

camera viewpoints have been most affected, where the development

of small scale UAVs has alleviated the need for sophisticated

hardware to manipulate cameras in space. For instance, in the movie

industry, drones are changing the way both professional and amateur

film‐makers can capture shots of actors and landscapes by allowing

the composition of aerial viewpoints that are not feasible using

traditional devices such as hand‐held cameras and dollies

(Santamarina‐Campos & Segarra‐Oña, 2018). In the sports domain,

flying cameras can track fast‐moving athletes and accompany

dynamic movements (La Bella, 2016). Furthermore, flying cameras

show a largely unexplored potential for tracking subjects of interest

in security applications (De‐Miguel‐Molina, 2018), which are not

possible with static sensors.
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However, manually operated UAVs often require multiple expert

pilots due to the difficulty of executing all necessary perception and

motion planning tasks synchronously: it takes high attention and

effort to simultaneously identify the actor(s), predict how the scene is

going to evolve, control the UAV, avoid obstacles, and reach the

desired viewpoints. Hence, there is a need for an autonomous aerial

cinematography system.

The distinctive challenge of developing an autonomous aerial

cinematography system is the need to tightly couple contextual and

geometric threads. Contextual reasoning involves processing camera

images to detect the actor, understanding how the scene is going to

evolve, and selecting desirable viewpoints. Geometric reasoning

considers the 3D configuration of objects in the environment to

evaluate the visibility quality of a particular viewpoint and whether

the UAV can reach it in a safe manner. Although these two threads

differ significantly in terms of sensing modalities, computational

representation, and computational complexity, both sides play a vital

role when addressing the entirety of the autonomous filming

problem. In this study, we present a complete system that combines

both threads in a cohesive and principled manner. To develop our

autonomous cinematographer, we address several key challenges.

1.1 | Challenges

Consider a typical filming scenario in Figure 1. The UAV must

overcome several challenges.

1.1.1 | Actor pose estimation with challenging
visual inputs

The UAV films a dynamic actor from various angles, therefore, it is

critical to accurately localize the actor’s position and orientation

in a 3D environment. In practice, the use of external sensors such

as motion capture systems (Nägeli, Meier, Domahidi, Alonso‐
Mora, & Hilliges, 2017) and global positioning system (GPS) tags

(Bonatti, Zhang, Choudhury, Wang, & Scherer, 2018; Joubert

et al., 2016) for pose estimation is highly impractical; a robust

system should only rely on visual localization. The challenge is to

deal with all possible viewpoints, scales, backgrounds, lighting

conditions, motion blur caused by both the dynamic actor and

camera.

1.1.2 | Operating in unstructured scenarios

The UAV flies in diverse, unstructured environments without prior

information. In a typical mission, it follows an actor across varying

terrain and obstacle types, such as slopes, mountains, and narrow

trails between trees or buildings. The challenge is to maintain an

online map that has a high enough resolution to reason about

viewpoint occlusions and that updates itself fast enough to keep the

vehicle safe.

1.1.3 | Keeping actor visibility while staying
safe

In cinematography, the UAV must maintain visibility of the actor for

as long as possible while staying safe in a partially known

environment. When dealing with dynamic targets, the UAV must

anticipate the actor’s motion and reason about collisions and

occlusions generated by obstacles in potential trajectories. The

challenge of visibility has been explored in previous works in varying

degrees of obstacle complexity (Bonatti, Ho, Wang, Choudhury, &

Scherer, 2019; Galvane et al., 2018; Nägeli et al., 2017; Penin,

Giordano, & Chaumette, 2018).

F IGURE 1 Aerial cinematographer pipeline: the unmanned aerial vehicle visually detects the actor’s motion using a vision‐based localization
module, maps the environment with an onboard LiDAR sensor, reasons about artistic guidelines, and plans a smooth, collision‐free trajectory

while avoiding occlusions [Color figure can be viewed at wileyonlinelibrary.com]
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1.1.4 | Understanding scene context for
autonomous artistic decision‐making

When filming a movie, the director actively selects the camera pose

based on the actor’s movement, environment characteristics, and

intrinsic artistic values. Although humans can make such esthetic

decisions implicitly, it is challenging to define explicit rules to define

the ideal artistic choices for a given context.

1.1.5 | Making real‐time decisions with onboard
resources

Our focus is on unscripted scenarios where shots are decided on the

fly; all algorithms must run in real‐time with limited computational

resources.

1.2 | Contributions

Our paper revolves around two key ideas. First, we design differenti-

able objectives for camera motion that can be efficiently optimized for

long time horizons. We architect our system to compute these

objectives efficiently online to film a dynamic actor. Second, we apply

learning to elicit human artistic preferences in selecting a sequence of

shots. Specifically, we offer the following contributions:

We propose a method for visually localizing the actor’s position,

orientation, and forecasting their future trajectory in the world

coordinate frame. We present a novel semisupervised approach

that uses temporal continuity in sequential data for the heading

direction estimation problem (Section 5);

We propose an incremental signed distance transform algorithm for

large‐scale real‐time environment mapping using a range sensor,

for example, LiDAR (Section 6);

We formalize the aerial filming motion planning problem following

cinematography guidelines for arbitrary types of shots and arbitrary

obstacle shapes. We propose an efficient optimization‐based
motion planning method that exploits covariant gradients and

Hessians of the objective functions for fast convergence (Section 7);

We propose a deep reinforcement learning (RL) method that

incorporates human esthetic preferences for artistic reasoning

to act as an autonomous movie director, considering the current

scene context to select the next camera viewpoints (Section 8);

We offer extensive quantitative and qualitative performance

evaluations both for our integrated system and for each module,

both in simulation and field tests (Section 9), along with detailed

discussions on experimental lessons learned (Section 10).

This paper builds upon our previous works that each focuses on

an individual component of our framework: visual actor detection,

tracking, and heading estimation (W. Wang, Ahuja, Zhang, Bonatti, &

Scherer, 2019), online environment mapping (Bonatti et al., 2019),

motion planning for cinematography (Bonatti et al., 2018), and

autonomous artistic viewpoint selection (Gschwindt, Camci, Bonatti,

Wang, & Scherer, 2019). In this paper, for the first time, we present a

detailed description of the unified architecture (Section 4), provide

implementation details of the entire framework, and offer extensive

flight test evaluations of the complete system.

2 | PROBLEM DEFINITION

The overall task is to control a UAV to film an actor who is moving

through an unknown environment. Let ( ) [ ] → × ( )t t SO: 0, 2q f
3ξ be

the trajectory of the UAV as a mapping from time to a position and

heading, that is, ξq(t) = {xq(t), yq(t), zq(t), ψq(t)}. Analogously, let

( ) [ ] → × ( )t t SO: 0, 2a f
3ξ be the trajectory of the actor: ξa(t) = {xa(t),

ya(t), za(t), ψa(t)}. In our work, an instantaneous measurement of the

actor state  × ( )S SO: 2a
3 is obtained using onboard sensors

(monocular camera and LiDAR, as seen in Section 5), but external

sensors and motion capture systems could also be employed (Section

3). Measurements Sa are continuously fed into a prediction module that

computes ξa (Section 5).

The UAV also needs to store a representation of the environ-

ment. Let grid  → [ ]: 0, 13 be a voxel occupancy grid that maps

every point in space to a probability of occupancy. Let  →: 3 be

the signed distance value of a point to the nearest obstacle. Positive

signs are for points in free space, and negative signs are for points

either in occupied or unknown space, which we assume to be

potentially inside an obstacle. During the flight the UAV senses the

environment with the onboard LiDAR, updates grid , and then

updates (more details at Section 6).

We can generically formulate a motion planning problem that

aims to minimize a particular cost function J(ξq) for cinematography.

Within the filming context, this cost function measures jerkiness of

motion, safety, environmental occlusion of the actor, and shot quality

(artistic quality of viewpoints). This cost function depends on the

environment and , and on the actor forecast ξa, all of which are

sensed on‐the‐fly. The changing nature of the environment and ξa
demands replanning at a high frequency.

Here we briefly touch upon the four components of the cost function

J(ξq) (refer to Section 7 for details and mathematical expressions):

Smoothness Jsmooth(ξq): Penalizes jerky motions that may lead to

camera blur and unstable flight;

Safety Jobs(ξq, ): Penalizes proximity to obstacles that are unsafe for

the UAV;

Occlusion Jocc(ξq, ξa, ): Penalizes occlusion of the actor by obstacles

in the environment;

Shot quality Jshot(ξq, ξa, Ωart): Penalizes poor viewpoint angles and

scales that deviate from the desired artistic guidelines, given by

the set of parameters Ωart.

In its simplest form, we can express J(ξq) as a linear composition

of each individual cost, weighted by scalars λi. The objective is to
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minimize J(ξq) subject to initial‐boundary constraints ξq(0). The

solution *
qξ is then tracked by the UAV:
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We describe in Section 7 how (1) is solved. The parameters Ωart of

the shot quality term Jshot are usually specified by the user before takeoff,

and assumed constant throughout the flight. For instance, based on the

terrain characteristics and the type of motion the user expects the actor

to do, they may specify a frontal or circular shot with a particular scale to

be the best artistic choice for that context. Alternatively, Ωart can change

dynamically, either by a user’s choice or algorithmically.

A dynamically changing Ωart leads to a new challenge: the UAV must

make choices that maximize the artistic value of the incoming visual feed.

As explained further in Section 8, artistic choices affect not only the

immediate images recorded by the UAV. By changing the positioning of

the UAV relative to the subject and obstacles, current choices influence

the images captured in future time steps. Therefore, the selection of Ωart

needs to be framed as a sequential decision‐making process.

Let vt = {I1, I2,…, Ik} be a sequence of k observed images captured

by the UAV during time step t between consecutive artistic decisions.

Let Rart(vt) be the user’s implicit evaluation reward based on the

observed video segment vt. The user’s choice of an optimal artistic

parameter sequence {Ω* Ω* … Ω*, , , n1 2 } can be interpreted as an

optimization of the following form:

∑{Ω* Ω* … Ω*} = ( )
{Ω Ω … Ω }

R v, , , arg max .n
t

t1 2
, , ,

art
n1 2

(2)

The optimization from Equation (2) is usually left up to the UAV

operator’s experience and intuition. In Section 8, we detail a novel

method for implicitly learning the selection of artistic parameters

depending on the scene’s context.

3 | RELATED WORK

Our work exploits synergies at the confluence of several domains of

research to develop an aerial cinematography platform that can follow

dynamic targets in unstructured environments using onboard sensors

and computing power. Next, we describe related works in different areas

that come together under the problem definition described in Section 2.

3.1 | Virtual cinematography

Camera control in virtual cinematography has been extensively

examined by the computer graphics community as reviewed by

Christie, Olivier, and Normand (2008). These methods typically

reason about the utility of a viewpoint in isolation, follow artistic

principles and composition rules (Arijon, 1976; Bowen & Thompson,

2013) and employ either optimization‐based approaches to find good

viewpoints or reactive approaches to track the virtual actor. The

focus is typically on through‐the‐lens control where a virtual camera

is manipulated while maintaining focus on certain image features

(Drucker & Zeltzer, 1994; Gleicher & Witkin, 1992; Lino & Christie,

2015; Lino, Christie, Ranon, & Bares, 2011). However, virtual

cinematography is free of several real‐world limitations such as

robot physics constraints and assumes full knowledge of the

environment.

Several works analyse the choice of which viewpoint to employ

for a particular situation. For example, in Drucker and Zeltzer (1994),

the researchers use an A* planner to move a virtual camera in

precomputed indoor simulation scenarios to avoid collisions with

obstacles in 2D. More recently, we find works such as Leake, Davis,

Truong, and Agrawala (2017) that postprocesses videos of a scene

taken from different angles by automatically labeling features of

different views. The approach uses high‐level user‐specified rules

which exploit the labels to automatically select the optimal sequence

of viewpoints for the final movie. In addition, Wu, Palù, Ranon, and

Christie (2018) help editors by defining a formal language of editing

patterns for movies.

3.2 | Autonomous aerial cinematography

There is a rich history of work in autonomous aerial filming. For

instance, several works focus on following user‐specified artistic

guidelines (Galvane, Fleureau, Tariolle, & Guillotel, 2017, 2018;

Joubert et al., 2016; Nägeli et al., 2017) but often rely on perfect

actor localization through a high‐precision RTK GPS or a motion‐
capture system. Additionally, although the majority of work in the

area deals with collisions between UAVs and actors (Huang, Gao,

et al., 2018; Joubert et al., 2016; Nägeli et al., 2017), they do not

factor in the environment for safety considerations. While there are

several successful commercial products, they too have certain

limitations such as operating in low speed and low clutter regimes

(e.g., DJI Mavic; DJI, 2018) or relatively short planning horizons (e.g.,

Skydio R1; Skydio, 2018). Even our previous work (Bonatti et al.,

2018), despite handling environmental occlusions and collisions,

assumes a prior elevation map and uses GPS to localize the actor.

Such simplifications impose restrictions on the diversity of scenarios

that the system can handle.

Several contributions to aerial cinematography focus on key-

frame navigation. Gebhardt, Hepp, Nägeli, Stevšić, and Hilliges (2016,

2018), Joubert, Roberts, Truong, Berthouzoz, and Hanrahan (2015),

Roberts and Hanrahan (2016), and Xie et al. (2018) provide user

interface tools to retime and connect static aerial viewpoints to

provide smooth and dynamically feasible trajectories, as well as a

visually pleasing images. Lan, Shridhar, Hsu, and Zhao, (2017) use

key‐frames defined on the image itself instead of world coordinates.
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Other works focus on tracking dynamic targets and employ a diverse

set of techniques for actor localization and navigation. For example,

Huang, Gao, et al. (2018) and Huang, Yang, et al. (2018) detect the

skeleton of targets from visual input, while other approaches rely on off‐
board actor localization methods from either motion‐capture systems or

GPS sensors (Bonatti et al., 2018; Galvane et al., 2017, 2018; Joubert

et al., 2016; Nägeli et al., 2017). These approaches have varying levels of

complexity: Bonatti et al. (2018) and Galvane et al. (2018) can avoid

obstacles and occlusions with the environment and with actors, while

other approaches only handle collisions and occlusions caused by actors.

In addition, in our latest work Bonatti et al. (2019) we made two

important improvements on top of Bonatti et al. (2018) by including

visual actor localization and online environment mapping.

Specifically, on the motion planning side, we note that different UAV

applications can influence the choice of motion planning algorithms. The

main motivation is that different types of planners can exploit specific

properties and guarantees of the cost functions. For example, sampling‐
based planners (Elbanhawi & Simic, 2014; Karaman & Frazzoli, 2011;

Kuffner & LaValle, 2000) or search‐based planners (Aine, Swaminathan,

Narayanan, Hwang, & Likhachev, 2016; LaValle, 2006) should ideally

use fast‐to‐compute costs so that many different states can be explored

during search in high‐dimensional state spaces. Other categories of

planners, based on trajectory optimization (Ratliff, Zucker, Bagnell, &

Srinivasa, 2009; Schulman et al., 2013), usually require cost functions to

be differentiable to the first or higher orders. We also find hybrid

methods that make judicious use of optimization combined with search

or sampling (Choudhury, Gammell, Barfoot, Srinivasa, & Scherer, 2016;

Luna, Şucan, Moll, & Kavraki, 2013).

Furthermore, different systems present significant differences in

onboard versus off‐board computation. We summarize and compare

contributions from past works in Table 1. It is important to notice

that none of the previously published approaches provides a

complete solution to the generic aerial cinematography problem

using only onboard resources.

3.3 | Making artistic choices autonomously

A common theme behind all the work presented so far is that a user

must always specify which kind of output they expect from the

system in terms of artistic behavior. This behavior is generally

expressed in terms of the set of parameters Ωart, and relates to

different shot types, camera angles and angular speeds, type of actor

framing, and so forth. If one wishes to autonomously specify artistic

choices, two main points are needed: a proper definition of a metric

for the artistic quality of a scene, and a decision‐making agent which

takes actions that maximize this quality metric, as explained in

Equation (2).

Several works explore the idea of learning a beauty or artistic

quality metric directly from data. Karpathy (2015) learns a measure

for the quality of selfies; Fang and Zhang (2017) learn how to

generate professional landscape photographs; Gatys, Ecker, and

Bethge (2016) learn how to transfer image styles from paintings to

photographs.

On the action generation side, we find works that have exploited

deep RL (Mnih et al., 2015) to train models that follow human‐
specified behaviors. Closest to our work, Christiano et al. (2017)

learn behaviors for which hand‐crafted rewards are hard to specify,

but which humans find easy to evaluate.

Our work, as described in Section 8, brings together ideas from all

the aforementioned areas to create a generative model for shot type

selection in aerial filming drones which maximizes an artistic quality

metric.

3.4 | Online environment mapping

Dealing with imperfect representations of the world becomes a

bottleneck for viewpoint optimization in physical environments. As

the world is sensed online, it is usually incrementally mapped using

TABLE 1 Comparison of dynamic aerial cinematography systems

Note: (a) Huang, Gao, et al. (2018) define artistic selection as the viewpoint that maximizes the projection of the actor on the image; (b) Bonatti et al.

(2018) localize the actor visually only for control of the camera gimbal, but use GPS to obtain the actor’s position in global coordinates for planning; (c)

Cells marked with “Actor” for occlusion and obstacle avoidance mean that those approaches only take into account the actors in the scene as ellipsoidal

obstacles, and disregard other objects.
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voxel occupancy maps (Thrun, Burgard, & Fox, 2005). To evaluate a

viewpoint, methods typically ray‐cast on such maps, which can be

very expensive (Charrow et al., 2015; Isler, Sabzevari, Delmerico, &

Scaramuzza, 2016). Recent advances in mapping have led to better

representations that can incrementally compute the truncated signed

distance field (TSDF; Klingensmith, Dryanovski, Srinivasa, & Xiao,

2015; Newcombe et al., 2011), that is, return the distance and

gradient to nearest object surface for a query. TSDFs are a suitable

abstraction layer for planning approaches and have already been

used to efficiently compute collision‐free trajectories for UAVs

(Cover, Choudhury, Scherer, & Singh, 2013; Oleynikova, Taylor, Fehr,

Nieto, & Siegwart, 2016).

3.5 | Visual target state estimation

Accurate object state estimation with monocular cameras is critical

for many robot applications, including autonomous aerial filming.

Two key problems in target state estimation include detecting

objects and their orientation.

Deep learning‐based techniques have achieved remarkable progress

in the area of 2D object detection, such as You Only Look Once (YOLO;

Redmon, Divvala, Girshick, & Farhadi, 2016), Single Shot Detector (SSD;

W. Liu, Anguelov, et al., 2016), and Faster R‐CNN method (Ren, He,

Girshick, & Sun, 2015). These methods use convolutional neural

networks (CNNs) for bounding box regression and category classifica-

tion. They require powerful graphics processing units (GPUs), and

cannot achieve real‐time performance when deployed to the onboard

platform. Another problem with off‐the‐shelf models trained on open

data sets is that they do not generalize well to the areal filming scenario

due to mismatches in data distribution due to angles, lighting, distances

to actor and motion blur. Later in Section 5, we present our approach

for obtaining a real‐time object detector for our application.

Another key problem in the actor state estimation for aerial

cinematography is estimating the heading direction of objects in the

scene. Heading direction estimation (HDE) has been widely studied

especially in the context of humans and cars as target objects.

There have been approaches that attach sensors including inertial

sensors and GPS to the target object to obtain the object’s (Deng, Si,

Qu, Liu, & Na, 2017; D. Liu, Pei, et al., 2016; Vista, Lee, & Chong,

2015) heading direction. While these sensors provide reliable and

accurate estimation, it is highly undesirable for the target actor to

carry these extra sensors. Thus, we primarily focus on vision‐based
approaches for our work that do not require the actor to carry any

additional equipment.

In the context of HDE using visual input, there have been

approaches based on classical machine learning techniques. Based on

a probabilistic framework, Flohr, Dumitru‐Guzu, Kooij, and Gavrila

(2015) present a joint pedestrian head and body orientation

estimation method, in which they design a HOG‐based linear support

vector machines pedestrian model. Learning features directly from

data rather than hand‐crafting them has proven more successful,

especially in the domain of computer vision. We, therefore, leverage

learning‐based approaches that ensure superior generalizability and

improved robustness.

Deep learning‐based approaches have been successfully applied

to the area of 2D pose estimation (Cao, Simon, Wei, & Sheikh, 2017;

Toshev & Szegedy, 2014) which is a related problem. However, the

3D heading direction cannot be trivially recovered from 2D points

because the keypoint’s depth remains undefined and ambiguous.

Also, these approaches are primarily focused on humans and do not

address other objects including cars.

There are fewer large‐scale data sets for 3D pose estimation

(Geiger, Lenz, Stiller, & Urtasun, 2013; Ionescu, Papava, Olaru, &

Sminchisescu, 2014; W. Liu et al., 2013; Raman, Sa, Majhi, & Bakshi,

2016) and the existing ones generalize poorly to our aerial filming

task, again due to mismatch in the data distribution. Thus, we look for

approaches that can be applied in a limited labeled data setting. The

limited data set constraint is common in many robotics applications,

where the cost of acquiring and labeling data is high. Semisupervised

learning (SSL) is an active research area in this domain. However,

most of the existing SSL works are primarily focused on classification

problems (Dai, Yang, Yang, Cohen, & Salakhutdinov, 2017; Hoffer &

Ailon, 2016; Rasmus, Berglund, Honkala, Valpola, & Raiko, 2015;

Weston, Ratle, Mobahi, & Collobert, 2012), which assume that

different classes are separated by a low‐density area and easy to

separate in high dimensional space. This assumption is not directly

applicable to regression problems.

In the context of cinematography, temporal continuity can be

leveraged to formulate a semisupervised regression problem.

Mobahi, Collobert, and Weston, (2009) developed one of the first

approaches to exploit temporal continuity in the context of deep

convolutional neural networks. The authors use video temporal

continuity over the unlabeled data as a pseudosupervisory signal and

demonstrate that this additional signal can improve object recogni-

tion in videos from the COIL‐100 data set (Nene, Nayar, & Murase,

1996). There are other works that learn feature representations

by exploiting temporal continuity (Goroshin, Bruna, Tompson,

Eigen, & LeCun, 2015; Srivastava, Mansimov, & Salakhudinov,

2015; Stavens & Thrun, 2010; X. Wang & Gupta, 2015; Zou, Zhu,

Yu, & Ng, 2012). Zou et al. (2012) included the video temporal

constraints in an autoencoder framework and learned invariant

features across frames. X. Wang and Gupta (2015) designed a

Siamese‐triplet network that can be trained in an unsupervised

manner with a large amount of video data and showed that the

unsupervised visual representation can achieve competitive perfor-

mance on various tasks, compared to its ImageNet‐supervised
counterpart. Inspired by these approaches, our recent work (W.

Wang et al., 2019) aims to improve the learning of a regression model

from a small labeled data set by leveraging unlabeled video

sequences to enforce temporally smooth output predictions.

After the target’s location and heading direction is estimated on

the image plane, we can project it onto the world coordinates and use

different methods to estimate the actor’s future motion. Motion

forecast methods can range from filtering methods such as Kalman

filters and extended Kalman filters (Thrun et al., 2005), which are
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based solely on the actor’s dynamics, to more complex methods that

take into account environmental features as well. As an example of

the latter, Urmson et al. (2008) use traditional motion planner with

hand‐crafted cost functions for navigation among obstacles, and

Zhang, Wang, Bonatti, Maturana, and Scherer (2018) use deep

inverse RL to predict the future trajectory distribution vehicles

among obstacles.

4 | SYSTEM OVERVIEW

In this section, we detail the design hypotheses (Section 4.1) that

influenced the system architecture layout (Section 4.2), as well as our

hardware (Section 4.3) and simulation (Section 4.4) platforms.

4.1 | Design hypotheses

Given the application challenges (Section 1.1) and problem defini-

tion (Section 2), we defined three key hypotheses to guide the

layout of the system architecture for the autonomous aerial

cinematography task. These hypotheses serve as high‐level princi-
ples for our choice of subsystems, sensors, and hardware. We

evaluate the hypotheses later in Section 9, where we detail our

simulation and field experiments.

Hyp. 1. Onboard sensors can provide sufficient information for good

cinematography performance. This is a fundamental assumption and a

necessary condition for the development of real‐world aerial

cinematography systems that do not rely on ground‐truth data

from off‐board sensors. We hypothesize that our system can deal

with noisy measurements and extract necessary actor and obstacle

information for visual actor localization, mapping, and planning.

Hyp. 2. Decoupling gimbal control from motion planning improves

real‐time performance and robustness to noisy actor measurements.

We assume that an independent 3‐DOF camera pose controller

can compensate for noisy actor measurements. We expect

advantages in two subsystems: (a) the motion planner can

operate faster and with a longer time horizon due to the

reduced trajectory state space, and (b) visual tracking will be

more precise because the controller uses direct image feedback

instead of a noisy estimate of the actor’s location. We use a

gimbaled camera with 3‐DOF control, which is a reasonable

requirement given today’s UAV and camera technology.

Hyp. 3. Analogous to the role of a movie director, the artistic intent

subsystem should provide high‐level guidelines for camera

positioning, but not interfere directly on low‐level controls. We

hypothesize that a hierarchical structure to guide artistic filming

behavior employing high‐level commands is preferable to an end‐
to‐end low‐level visio‐motor policy because: (a) it is easier to

ensure overall system safety and stability by relying on more

established motion planning techniques, and (b) it is more data‐
efficient and easier to train a high‐level decision‐making agent

than an end‐to‐end low‐level policy.

F IGURE 2 The system consists of four main modules running in parallel: Vision, mapping, planning, and artistic shot selection. The system

takes in visual, LiDAR, and GPS inputs to output gimbal and flight controller commands [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | System architecture

Taking into account the design hypotheses, we outline the software

architecture in Figure 2. The system consists of four main modules:

Vision, mapping, planning and artistic shot selection. The four modules

run in parallel, taking in‐camera, LiDAR and GPS inputs to output gimbal

and flight controller commands for the UAV platform.

4.2.1 | Vision (Section 5)

The module takes in monocular images to compute a predicted actor

trajectory for the Shot Selection and Planning Module. Following Hyp. 2,

the vision module also controls the camera gimbal independently of the

planning module.

4.2.2 | Mapping (Section 6)

The module registers the accumulated LIDAR point cloud and

outputs different environment representations: obstacle height

map for ray‐casting and shot selection, and truncated signed

distance transform (TSDT) map for the motion planner.

4.2.3 | Artistic shot selection (Section 8)

Following Hyp. 3 the module acts as an artistic movie director

and defines high‐level inputs for the motion planner defining the most

esthetic shot type (left, right, front, and back) for a given scene context,

composed of actor trajectory and obstacle locations.

4.2.4 | Planning (Section 7)

The planning module takes in the predicted actor trajectory,

TSDT map, and the desired artistic shot mode to compute

a trajectory that balances safety, smoothness, shot quality,

and occlusion avoidance. Using the UAV pose estimate, the

module outputs velocity commands for the UAV to track the

computed trajectory.

4.3 | Hardware

Our base platform is the DJI M210 quadcopter, shown in Figure 3.

The UAV fuses GPS, IMU, and compass for state estimation, which

can be accessed via DJI’s SDK. The M210 has a maximum payload

capacity of 2.30 kg1, which limits our choice of batteries and onboard

computers and sensors.

Our payload is composed of (weights are summarized in Table 2):

• DJI TB50 batteries, with a maximum flight time of 13min at full

payload;

• DJI Zenmuse X4S gimbaled camera, whose 3‐axis gimbal can be

controlled independently of the UAV’s motion with angular precision

of ±0.01∘, and counts with a vibration‐dampening structure. The

camera records high‐resolution videos, up to 4K at 60 FPS;

• NVIDIA Jetson TX2 with Astro carrier board. 8 GB of RAM, six

CPU cores and 256 GPU cores for onboard computation;

• Velodyne Puck VLP‐16 Lite LiDAR, with ±15∘ vertical field of view

and 100m max range.

4.4 | Photo‐realistic simulation platform

We use the Microsoft AirSim simulation platform (Shah, Dey, Lovett,

& Kapoor, 2018) to test our framework and to collect training data

for the shot selection module, as explained in detail in Section 8.

AirSim offers a high‐fidelity visual and physical simulation for

quadrotors and actors (such as humans and cars), as shown in

Figure 4. We built a custom ROS (Quigley et al., 2009) interface for

the simulator, so that our system can switch between the simulation

and the real drone seamlessly. All nodes from the system

F IGURE 3 System hardware: DJI M210 drone equipped with Nvidia
TX2 computer, Velodyne VLP‐16 Puck Lite LiDAR and Zenmuse X4S
camera gimbal [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 System and payload weights

Component Weight (kg)

DJI M210 2.80

DJI Zenmuse X4S 0.25

DJI TB 50 batteries × 2 1.04

NVIDIA TX2 w/carrier board 0.30

VLP‐16 Lite 0.59

Structure modifications 0.63

Cables and connectors 0.28

Total 5.89 ≤ 6.14 (maximum takeoff weighta)

ahttps://www.dji.com/products/compare‐m200‐series

1https://www.dji.com/products/compare‐m200‐series
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architecture are written in C++ and Python languages, and

communicate using the ROS framework.

5 | VISUAL ACTOR LOCALIZATION AND
HEADING ESTIMATION

The vision module is responsible for two critical roles in the system:

to estimate the actor’s future trajectory and to control the camera

gimbal to keep the actor within the frame. Figure 5 details the four

main submodules: actor detection and tracking, heading direction

angle estimation, global position ray‐casting, and finally a filtering

stage for trajectory forecasting. Next, we detail each submodule.

5.1 | Detection and tracking

As we discussed in Section 3, the state‐of‐the‐art object detection

methods require large computational resources, which are not

available on our onboard platform, and do not perform well in our

scenario due to the data distribution mismatch. Therefore, we

develop two solutions: first, we build a custom network structure and

train it on both the open and context‐specific data sets to improve

speed and accuracy; second, we combine the object detector with a

real‐time tracker for stable performance.

The deep learning‐based object detectors are composed

of a feature extractor followed by a classifier or regressor.

Different feature extractors could be used in each detector

to balance efficiency and accuracy. Since the onboard

embedded GPU is less powerful, we can only afford feature

extractor with relatively fewer layers. We compare several

lightweight publicly available trained models for people detection

and car detection.

Due to good real‐time inference speed and low memory

usage, we combine the MobileNet (Howard et al., 2017) for

feature extraction and the Faster‐RCNN (Ren et al., 2015)

architecture. Our feature extractor consists of 11 depth‐wise

convolutional modules, which contain 22 convolutional layers.

Following the Faster‐RCNN structure, the extracted feature then

goes to a two‐stage detector, namely a region proposal stage and

a bounding box regression and a classification stage. While the

size of the original Faster‐RCNN architecture with VGG is

548 MB, our custom network’s is 39 MB, with an average

inference time of 300 ms.

F IGURE 4 Simulation platform: AirSim combines a physics engine with photorealistic renderings of various environments and actors (human
and vehicles). Here we show the urban and forest environments we used for testing our framework. We build a point cloud and an occupancy map

in the simulation. The simulation provides ground truth data for the actor’s pose, which is used to evaluate the performance of the vision pipeline
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Vision subsystem. We detect and track the actor’s bounding box, estimate its heading, and project its pose to world coordinates.
A Kalman filter predicts the actor’s forecasted trajectory ξa [Color figure can be viewed at wileyonlinelibrary.com]
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The distribution of images in the aerial filming task differs

significantly from the usual images found in openly accessible data

sets, due to highly variable relative yaw and tilt angles to the actors,

large distances, varying lighting conditions, and heavy motion blur.

Figure 6 displays examples of challenging situations faced in the aerial

cinematography problem. Therefore, we trained our network with

images from two sources: a custom data set of 120 challenging images

collected from field experiments, and images from the COCO (Lin et al.,

2014) data set, in a 1:10 ratio. We limited the detection categories only

to person, car, bicycle, and motorcycle, which are object types that

commonly appear as actors in aerial filming.

The detection module receives the main camera’s monocular image

as inputs and outputs a bounding box. We use this initial bounding box to

initialize a template tracking process and reinitialize detection whenever

the tracker’s confidence falls below acceptable limits. We adopt this

approach, as opposed to detecting the actor in every image frame,

because detection is a computationally heavy process, and the high rate

of template tracking provides more stable measurements for subsequent

calculations. We use Kernelized Correlation Filters (Henriques,

Caseiro, Martins, & Batista, 2015) to track the template over the next

incoming frames.

As mentioned in Section 4, we actively control camera gimbal

independently of the UAV’s motion to maintain visibility of the

target. We use a PD controller to frame the actor on the desired

screen position, following the commanded artistic principles from the

operator. Typically, the operator centers the target in the middle of

the image space, or uses visual composition rules such as the rule of

thirds (Bowen & Thompson, 2013), as seen on Figure 7.

5.2 | Heading estimation

When filming a moving actor, HDE plays a central role in motion

planning. Using the actor’s heading information, the UAV can position

itself within the desired shot type determined by the user’s artistic

objectives, for example, back, front, left, and right‐side shots, or

within any other desired relative yaw angle.

Estimating the heading of people and objects is also an active

research problem in many other applications, such as pedestrian

collision risk analysis (Tian et al., 2014), human–robot interaction

(Vázquez, Steinfeld, & Hudson, 2015) and activity forecasting

(Kitani, Ziebart, Bagnell, & Hebert, 2012). Similar to challenges in

bounding box detection, models obtained in other data sets do

not easily generalize to the aerial filming task, due to a mismatch

in the types of images from data sets to our application. In

addition, when the trained model is deployed on the UAV, errors

is compounded because the HDE relies on a imperfect object

detection module, increasing the mismatch (Geiger et al., 2013;

Ristani, Solera, Zou, Cucchiara, & Tomasi, 2016).

No current data set satisfies our needs for aerial HDE,

creating the need for us to create a custom labeled data set for

our application. As most deep learning approaches, training a

network is a data‐intensive process, and manually labeling a large

enough data set for conventional supervised learning is a

laborious and expensive task. The process is further complicated

as multiple actor types such as people, cars, and bicycles can

appear in footages.

F IGURE 6 Examples of challenging images for actor detection in the aerial filming task. Large relative tilt angles to the ground, variable
lighting, large distance to actor, and heavy motion blur make bounding box detection harder than in images from open data sets [Color figure
can be viewed at wileyonlinelibrary.com]

F IGURE 7 Desired screen position of the actor projection,
defined by parameters: spx, spy∈ [0, 1]. Typically the user uses one‐
third of the screen to set the actor’s position or centers the actor on
the frame (Bowen & Thompson, 2013) [Color figure can be viewed at
wileyonlinelibrary.com]
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These constraints motivated us to formulate a novel semisuper-

vised algorithm for the HDE problem (W. Wang et al., 2019). To

drastically reduce the quantity of labeled data, we leverage temporal

continuity in video sequences as an unsupervised signal to regularize

the model and achieve better generalization. We apply the

semisupervised algorithm in both training and testing phases,

drastically increasing inference performance, and show that by

leveraging unlabeled sequences, the amount of labeled data required

can be significantly reduced.

5.2.1 | Defining the loss for temporal continuity

We define the pose of the actor as a vector [ ]x y z, , , a
wψ on the ground

surface. To estimate the actor’s heading direction in the world frame

a
wψ , we first predict the actor’s heading ψa in the image frame, as

shown in Figure 8. Once ψa is estimated, we project this direction

onto the world frame coordinates using the camera’s intrinsic and

extrinsic matrices.

The HDE module outputs the estimated heading angle ψa

in image space. Since ψa is ambiguously defined at the frontier

between −π and π, we define the inference as a regression problem

that outputs two continuous values: [cos(ψa), sin(ψa)]. This avoids

model instabilities during training and inference.

We assume access to a relatively small labeled data set

= {( )} =D x y,i i i
n

0, where xi denotes input image, and yi = [cos(ψi), sin

(ψi)] denotes the angle label. In addition, we assume access to a large

unlabeled sequential data set = { } =U qj j
m

0, where qj = {x0, x1,…, xt} is a

sequence of temporally continuous image data.

The HDE module’s main objective is to approximate a

function y = f(x), that minimizes the regression loss on the labeled data

∑(x, y)∈DLl(xl, yl) =∑(x, y)∈D ∥yi − f(xi)∥2. One intuitive way to leverage

unlabeled data is to add a constraint that the output of the model

should not have large discrepancies over a consecutive input sequence.

Therefore, we train the model to jointly minimize the labeled loss Ll and

some continuity loss Lu. We minimize the combined loss:

∑ ∑= ( ) + ( )
( )∈ ∈

L L x y L qmin , .
x y L

l l l
q U

u utot

,l l u

λ (3)

We define the unsupervised loss using the idea that samples

closer in time should have smaller differences in angles than

samples further away in time. A similar continuity loss is also used

by X. Wang and Gupta (2015) when training an unsupervised

feature extractor:

∑( ) = [ ( ) − ( )]

( ) = ∥ ( ) − ( )∥

∈

L q D x x f D x x f

D x x f f x f x
x x x q

max 0, , ; , ; ,

where : , ; ,

and : , ,

u u
x x x

u

, ,

1 2 1 3

1 2 1 2 2

1 2 3

1 2 3
(4)

5.2.2 | Network structure

For lower memory usage and faster inference time in the onboard

computer, we design a compact CNN architecture based on

MobileNet (Howard et al., 2017). The input to the network is a

cropped image of the target’s bounding box, outputted by the

detection and tracking modules. The cropped image is padded to a

square shape and resized to 192 × 192 pixels. After the 10 group‐
wise and point‐wise convolutional blocks from the original MobileNet

architecture, we add another convolutional layer and a fully

connected layer that output two values representing the cosine

and sine values of the angle. Figure 9 illustrates the architecture.

During each training iteration, one shuffled batch of labeled data

and one sequence of unlabeled data are passed through the network.

The labeled loss and unlabeled losses are computed and back-

propagated through the network.

5.2.3 | Cross‐data set semisupervised fine‐tuning

Due to data distribution mismatch between the aerial cinemato-

graphy task and open data sets, we train our network on a

combination of images from both sources. Later in Section 9.2 we

evaluate the impact of fine‐tuning the training process with

unsupervised videos from our application.

5.3 | Ray‐casting

The ray‐casting module convert the detection/tracking and HDE

results from image space to coordinates and heading in the world

frame [ ]x y z, , , a
wψ . Given the actor’s bounding box, we project its

center‐bottom point onto a height map of the terrain, provided by

F IGURE 8 Example of actor bounding boxes and their respective heading angles ψa in image space. Given the images, our objective is to
predict the heading direction, shown as red arrows [Color figure can be viewed at wileyonlinelibrary.com]
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the mapping module. The intersection of this line with the heightmap

provides the [x, y, z] location of the actor.

Assuming that the camera gimbal’s roll angle is fixed at zero

degrees by the active gimbal controller, we can directly obtain the

actor’s heading direction on the world frame a
wψ by transforming the

heading ψ from the image space with the camera’s extrinsic matrix in

world coordinates (Figure 10).

5.4 | Motion forecasting

Given a sequence of actor poses in the world coordinates, we

estimate the actor’s future trajectory based on motion models. The

motion planner later uses the forecast to plan nonmyopically over

long time horizons.

We use two different motion models depending on the actor types.

For people, we apply a linear Kalman filter with a two‐dimensional

motion model. Since a person’s movement direction can change

drastically, we use no kinematic constraints applied to the motion model,

and just assume constant velocity. We assume no control inputs for state

[ ˙ ˙ ]x y x y, , , in the prediction step, and use the next measurement of [x, y, z]

in the correction step. When forecasting the motion of cars and bicycles

we apply an extended Kalman filter with a kinematic bicycle model. For

both cases, we use a 10 s horizon for prediction.

6 | ONLINE ENVIRONMENT MAPPING

As explained in Section 2, the motion planner requires signed distance

values to solve the optimization problem that results in the final UAV

trajectory. The main role of the mapping subsystem described here is to

register LiDAR points from the onboard sensor, update the occupancy

grid , and incrementally update the signed distance .

6.1 | LiDAR registration

During our filming operation, we receive approximately 300,000

points per second from the laser sensor mounted at the bottom of the

aircraft. We register the points in the world coordinate system using a

rigid body transform between the sensor and the aircraft plus the

UAV’s state estimation, which fuses GPS, barometer, internal IMUs

and accelerometers. For each point, we also store the corresponding

sensor coordinate, which is used for the occupancy grid update.

LiDAR points can be categorized either as hits, which represent

successful laser returns within the maximum range of 100m, or as

misses, which represent returns that are either nonexistent, beyond

the maximum range, or below a minimum sensor range. We filter all

expected misses caused by reflections from the aircraft’s own

structure. Finally, we probabilistically update all voxels from

between the sensor and its LiDAR returns, as described in

Section 6.2.

F IGURE 9 Our network architecture for predicting the actor’s heading direction. We use a Mobilenet‐based feature extractor followed by a

convolutional layer and a fully connected layer to regress to angular values. The network is trained using both labeled and unsupervised losses
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Ray‐casting module uses the actor’s bounding box,
estimated heading angle, environment height map, and camera
matrices to obtain pose of the actor in the world frame [ ]x y z, , , a

wψ

[Color figure can be viewed at wileyonlinelibrary.com]
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6.2 | Occupancy grid update

The mapping subsystem holds a rectangular grid that stores the

likelihood that any cell in space is occupied. In this study, we use a

grid size of 250 × 250 × 100m, with 1m square voxels that store an

8‐bit integer value between 0 and 255 as the occupancy probability,

where 0 is the limit for a fully free cell, and 255 is the limit for a fully

occupied cell. All cells are initialized as unknown, with value of 127.

Algorithm 1 covers the grid update process. The inputs to the

algorithm are the sensor position psensor, the LiDAR point ppoint, and

a flag is_hit that indicates whether the point is a hit or miss. The

endpoint voxel of a hit will be updated with log‐odds value locc, and

all cells in between sensor and endpoint will be updated by

subtracting value lfree. We assume that all misses are returned as

points at the maximum sensor range, and in this case, only the cells

between endpoint and sensor are updated lfree.

As seen in Algorithm 1, all voxel state changes to occupied or free

are stored in lists Vocc
change and Vfree

change. State changes are used for the

signed distance update, as explained in Section 6.3.

6.3 | Incremental distance transform update

We use the list of voxel state changes as input to an algorithm,

modified from Cover et al. (2013), that calculates an incremental TSDT

(iTSDT), stored in . The original algorithm described by Cover et al.

(2013) initializes all voxels in as free, and as voxel changes arrive in

sets Vocc
change and Vfree

change, it incrementally updates the distance of each

free voxel to the closest occupied voxel using an efficient wavefront

expansion technique within some limit (therefore truncated).

Our problem, however, requires a signed version of the DT, where

the inside and outside of obstacles must be identified and given

opposite signs (details of this requirement are given in the

description of the occlusion cost function detailed in Section 7).

The concept of regions inside and outside of obstacles cannot be

captured by the original algorithm, which provides only a iTDT (with

no sign). Therefore, we introduced two important modifications.

6.3.1 | Using the borders of obstacles

The original algorithm uses only the occupied cells of , which are

incrementally pushed into using set Vocc
change. We, instead, define the

concept of obstacle border cells, and push them incrementally as Vocc
change.

Let vborder be an obstacle border voxel, and Vborder be the set of all

border voxels in the environment. We define vborder as any voxel that

is either a direct hit from the LiDAR (lines 13–15 of Algorithm 1), or as

any unknown voxel that is a neighbor of a free voxel (lines 5–9 of

Algorithm 1). In other words, the set Vborder will represent all cells that

separate the known free space from unknown space in the map,

whether this unknown space is part of cells inside an obstacle or cells

that are actually free but just have not yet been cleared by the LiDAR.

By incrementally pushing Vocc
change and Vfree

change into , its data

structure will maintain the current set of border cells Vborder. By

using the same algorithm described in Cover et al. (2013) but now

with this distinct type of data input, we can obtain the distance of any

voxel in to the closest obstacle border. One more step is required

to obtain the sign of this distance.

6.3.2 | Querying for the sign

The data structure of only stores the distance of each cell to the

nearest obstacle border. Therefore we query the value of to

attribute the sign of the iTSDT, marking free voxels as positive, and

unknown or occupied voxels as negative (Figure 11).

6.4 | Building a height map

Despite keeping a full 3D map structure as the representation used

for planning (Section 7), we also incrementally build a height map of

F IGURE 11 Diagram with our obstacle representation. Unknown
voxels (red shade) are either inside of obstacles, or in zones occluded

from the sensor’s field of view. The red line displays the obstacle
border, which is at the interface between LiDAR hits and free space,
and at the interface between unknown and free space. In this

conceptual figure, we assume the sensor to be onmidirectional, so
the ground and obstacles below aircraft were captured as hits;
however, in practice the sensor has a field of view limitations [Color

figure can be viewed at wileyonlinelibrary.com]
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the environment that is used for both the ray‐casting procedure

when finding the actor position in world coordinates (Section 5), and

for the online learned artistic shot type selection procedure

(Section 8).

The height map is a 2D array where the value of each cell

corresponds to a moving average of the height of the LiDAR hits that

arrive in each position. All cells are initialized with 0m of height,

relative to the world coordinate frame, which is taken from the

UAV’s takeoff position. An example height map is shown in Figure 12.

7 | MOTION PLANNING

The motion planner’s objective is to calculate trajectories for the

UAV to film the moving actor. Next we detail the definition of our

trajectory, cost functions, the trajectory optimization algorithm, and

implementation details.

7.1 | UAV trajectory definition

Recall Section 2, where we defined ( ) [ ] → × ( )t t SO: 0, 2q f
3ξ as the

UAV trajectory and ( ) [ ] → × ( )t t SO: 0, 2a f
3ξ as the actor trajectory,

where ξq(t) = {xq(t), yq(t), zq(t), ψq(t)} and ξa(t) = {xa(t), ya(t), za(t), ψa(t)}.

High‐frequency measurements of the actor’s current position generate

the actor’s motion forecast ξa(t) in the vision module (Section 5.4), and it

is the motion planner’s objective to output the UAV trajectory ξq(t).

Since the gimbal controller can position the camera independently

of the UAV’s body motion, we purposefully decouple the UAV’s body

heading ψ(t) from the main motion planning algorithm. We set ψq(t) to

always point from ξq(t) toward ξa(t) at all times, as seen in Equation (5).

( ) = ( ( ) − ( ) ( ) − ( ))t y t y t x t x tatan2 , .q a q a qψ (5)

This assumption significantly reduces the complexity of the

planning problem by removing four degrees of freedom (three from

the camera and one from the UAV’s heading), and improves filming

performance because the camera can be controlled directly from

image feedback, without the accumulation of errors from the

ray‐casting module (Section 5).

Now, let ξq(t) represent the UAV’s trajectory in a continuous

time‐parametrized form, and let ξq represent the same trajectory in a

finite discrete form, with total time length tf. Let point p0 represents

the contour conditions of the beginning of the trajectory. ξq contains

a total of n − 1 waypoints of the form pi, where i = 1,…, n − 1, as

shown in Equation (6).
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7.2 | Planner requirements

As explained in Section 2, in a generic aerial filming framework we want

trajectories which are smooth (Jsmooth), capture high‐quality viewpoints

(Jshot), avoid occlusions (Jocc) and keep the UAV safe (Jobs). Each objective

can then be encoded in a separate cost function, and the motion planner's

objective is to find the trajectory that minimizes the overall cost, assumed

to be a linear combination of individual cost functions, subject to the

initial condition constraints. For the sake of completeness, we repeat

Equation (1) below as Equation (7):
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Our choice of cost functions and planning is dictated by two main

observations. First, filming requires the UAV to reason over a longer

horizon than reactive approaches, usually in the order of ~10 s. The

UAV not only has to avoid local obstacles such as small branches or

light posts, but also consider how larger obstacles such as entire

trees, buildings, and terrain elevations may affect image generation.

Note that the horizons are limited by how accurate the actor

prediction is. Second, filming requires a high planning frequency. The

actor is dynamic, constantly changing direction and velocity. The map

is continuously evolving based on sensor readings. Finally, since

jerkiness in trajectories have a significant impact on video quality, the

plans need to be smooth, free of large time discretization.

Based on these observations, we chose local trajectory

optimization techniques to serve as the motion planner. Optimi-

zations are fast and reason over a smooth continuous space of

trajectories. In addition, locally optimal solutions are almost

always of acceptable quality, and plans can be incrementally

updated across planning cycles.

A popular optimization‐based approach that addresses the aerial

filming requisites is to cast the problem as an unconstrained cost

optimization, and apply covariant gradient descent (Ratliff, Silver, &

F IGURE 12 The left figure shows the height map accumulated

overflight over a small mountain. The color scale goes from 0 (−10m)
to 255 (+10m), where the zero reference of 127 is taken at the
unmanned aerial vehicles initial takeoff height. The right figure is the

top‐down view of the mountain of the same place [Color figure can
be viewed at wileyonlinelibrary.com]
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Bagnell, 2009; Zucker et al., 2013). This is a quasi‐Newton method, and

requires that some of the objectives have analytic Hessians that are easy

to invert and that are well‐conditioned. With the use of first and second‐
order information about the problem, such methods exhibit fast

convergence while being stable and computationally inexpensive. The

use of such quasi‐Newton methods requires a set of differentiable cost

functions for each objective, which we detail next.

7.3 | Definition of cost functions

7.3.1 | Smoothness

We measure smoothness as the cumulative sum of nth order

derivatives of the trajectory, following the rationale of Ratliff,

Zucker, et al. (2009). Let D be a discrete difference operator. The

smoothness cost is

∫ ∑( ( )) = ( ( ))
=

J t
t

D t dt
1 1

2
,q

f

t

d

d

n
d

qsmooth
0

1

2f
max

ξ α ξ (8)

where αn is a weight for different orders, and dmax is the number of

orders. In practice, we penalize derivatives up to the third order,

setting αn = 1, dmax = 3. Appendix expands upon this cost function and

reformulates it in matrix form using auxiliary matrices Asmooth,

bsmooth, and csmooth. We state the cost, gradient and Hessian for

completeness:
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+ +
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7.3.2 | Shot quality

First, we analytically define the artistic shot parameters. Based on

cinematography literature (Arijon, 1976; Bowen & Thompson, 2013), we

select a minimal set of parameters that compose most of the shots

possible for single‐actor, single‐camera scenarios. We define Ωart as a set

of three parameters: Ωart = {ρ, ψrel, ϕrel}, where (a) ρ is the shot scale,

which can be mapped to the distance between actor and camera, (b) ψrel
is the relative yaw angle between actor and camera, and (c) ϕrel is the

relative tilt angle between the actor’s current height plane and the

camera. Figure 13 depicts the components of Ωart.

Given a set Ωart, we can now define a desired cinematography

path ξshot(t):

( ) = ( ) +
⎡

⎣

⎢
⎢

( + ) ( )

( + ) ( )

( )

⎤

⎦

⎥
⎥

t t

cos sin

sin cos

cos

,a

a

ashot

rel rel

rel rel

rel

ξ ξ ρ

ψ ψ θ

ψ ψ θ

θ

(10)

Next, we can define an analytical expression for the shot quality

cost function as the distance between the current camera trajectory

and the desired cinematography path:

∫( ) = ‖ ( ) − ( ( ))‖J
t

t t dt,
1 1

2
.q a

f

t

q ashot
0 shot

2f
ξ ξ ξ ξ ξ (11)

Appendix expands upon this cost function and reformulates it in

matrix form using auxiliary matrices Ashot, bshot, and cshot. Again, we

state the cost, gradient, and Hessian for completeness:
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( − )

+ +
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( − )
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(12)

We note that although the artistic parameters of the shot quality

cost described in this study are defined for single‐actor single‐camera

scenarios, the extension of Jshot to multiactor scenarios is trivial. It

can be achieved by defining an artistic guideline ξshot using multiactor

parameters such as the angles with respect to the line of action

(Bowen & Thompson, 2013), or geometric center of the targets. We

detail more possible extensions of our work in Section 11.

7.3.3 | Safety

Given the online map , we can obtain the TSDT map  →: 3 as

described in Section 6. Given a point p, we adopt the obstacle

avoidance function from Zucker et al. (2013). This function linearly

F IGURE 13 Shot parameters Ωart for shot quality cost function, adapted from Bowen and Thompson (2013), (a) shot scale ρ
corresponds to the size of the projection of the actor on the screen; (b) line of action‐angle ψrel ∈ [0, 2π]; (c) tilt angle θrel ∈ [−π, π]

[Color figure can be viewed at wileyonlinelibrary.com]
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penalizes the intersection with obstacles, and decays quadratically

with distance, up to a threshold ϵobs:

{( ) =

− ( ) + ϵ ( ) <

ϵ
( ( ) − ϵ ) < ( ) ≤ ϵ

c p

p p

p p

1

2
0,

1

2
0 ,

0 otherwise.

obs

obs
obs

2
obs

(13)

Similarly to Zucker et al. (2013), define a safety cost function for

the entire trajectory:

∫( ) = ( ( )) ( )
=

J c t
d
dt

t dt, .q t

t

q qobs
0

f
ξ ξ ξ (14)

We can differentiate Jobs with respect to a point at time ti to obtain

the cost gradient (note that ˆ =
∣ ∣

v v
v

denotes a normalized vector):
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In practice, we use discrete derivatives to calculate , the

velocities ṗi , and accelerations p̈i .

7.3.4 | Occlusion avoidance

Even though the concept of occlusion is binary, that is, we either

have or do not have visibility of the actor, a major contribution of

our past work (Bonatti et al., 2018) was to define a differentiable

cost that expresses a viewpoint’s occlusion intensity among

arbitrary obstacle shapes. The fundamental idea behind this cost

is that it measures along how much obstacle blockage the best

possible camera viewpoints of ξq would go through, assuming the

camera pointed directly at the actor’s true position at all times. For

illustration purposes, Figure 14 shows the concept of occlusion for

motion in a 2D environment, even though our problem fully

defined in 3D.

Mathematically, we define occlusion as the integral of the TSDT

cost c over a 2D manifold connecting both trajectories ξq and ξa. The

manifold is built by connecting each UAV‐actor position pair at time t

using the parametrized path p(τ), where p(τ = 0) = ξq(t) and p

(τ = 1) = ξa(t):
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We can derive the functional gradient with respect to a point pi at

time ti, resulting in

[ ]
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Intuitively, the term multiplying ∇c(p(τ)) is related to variations of

the signed distance gradient in space, with the rest of the term acting

as a lever to deform the trajectory. The term c(p(τ)) is linked to

changes in path length between camera and actor.

7.4 | Trajectory optimization algorithm

Our objective is to minimize the total cost function J(ξq) (1). We do so

by covariant gradient descent, using the gradient of the cost function

∇J(ξq), and an analytic approximation of the Hessian ∇ 2J(ξq) =

(Asmooth + λ3Ashot):

= − ( + ) ∇ ( )+ −A A J
1

.q q qsmooth 1 shot
1ξ ξ

η
λ ξ (19)

F IGURE 14 Occlusion cost representation. (a) For every pair of UAV‐actor position, we integrate the penalization c on the signed distance

field over a 2D manifold. (b) After optimization, occlusion gradients pull the UAV trajectory toward regions with full visibility of the actor. UAV,
unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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In the optimization context, ∇2J(ξq) acts as a metric to guide the

solution towards the direction of the steepest descent of the

functional cost. This step is repeated until convergence. We follow

two conventional stopping criteria for descent algorithms based on

current cost landscape curvature and relative cost decrease (Boyd &

Vandenberghe, 2004), and limit the maximum number of iterations.

We use the current trajectory as initialization for the next planning

problem, appending a segment with the same curvature as the final

points of the trajectory for the additional points until the end of the

time horizon.

Note in Algorithm 2 one of the main advantages of the CHOMP

algorithm (Ratliff, Zucker, et al., 2009): we only perform the Hessian

matrix inversion once, outside of the main optimization loop,

rendering good convergence rates (Bonatti et al., 2018). By fine‐
tuning hyper‐parameters such as trajectory discretion level,

trajectory time horizon length, optimization convergence thresh-

olds, and relative weights between costs, we can achieve a

replanning frequency of approximately 5 Hz considering a 10 s

horizon. These are adequate parameters for safe and nonmyopic

operations in our environments, but lower or higher frequencies can

be achieved with the same underlying algorithm depending on

application‐specific requirements.

The resulting trajectory from the most recent plan is appended to

the UAV’s trajectory tracker, which uses a PD controller to send

velocity commands to the aircraft’s internal controller.

8 | LEARNING ARTISTIC SHOT SELECTION

In this section, we introduce a novel method for online artistic shot

type selection. Parameter selection which specifies the shot type can

be set before deployment with a fixed set of parameters Ωart.

However, using a fixed shot type renders undesirable results during

operation since the UAV does not adapt to different configurations of

obstacles in the environment. Instead, here we design an algorithm for

selecting adaptive shot types, depending on the context of each scene.

8.1 | Deep reinforcement learning problem
formulation

As introduced in Section 2, the choice of artistic parameters is a time‐
dependent sequential decision‐making problem. Decisions taken at

the current time step influence the quality of choices in future states.

Figure 15 exemplifies the sequential nature of the problem.

We define the problem as a contextual Markov decision

process (C‐MDP; Krishnamurthy, Agarwal, & Langford, 2016), and

use an RL algorithm to find an optimal shot selection policy. Our

goal is to learn a policy πθ(at|ct), parametrized by θ, that allows an

agent to choose an action at, given scene context ct, to select

among a discrete set of UAV artistic parameters Ωart. Our action

set is defined as four discrete values of Ω relative to left, right,

back, and frontal shots. These shot types define the relative yaw

angle ϕrel, which is fed into the UAV’s motion planner, as

explained in Section 7.

We define state ct as the scene context, which is an observation

drawn from the current MDP state st. The true state of the MDP is

not directly observable because, to maintain the Markovian assump-

tion, it encodes a diverse set of information such as: the UAV’s full

state and future trajectory, the actor’s true state and future

trajectory, the full history of shot types executed in past choices, a

set of images that the UAV’s camera has recorded so far, ground‐
truth obstacle map, environmental properties such as lighting and

wind conditions, and so forth. Therefore, our definition of context ct

can be seen as a lower dimensional compression of st, given by a

concatenation of the following three elements:

F IGURE 15 Example of artistic
parameter selection as a sequential

decision‐making problem. The choice of
frontal or back shots at time step t1
influence the quality of left side shot
choice at time step t2 [Color figure can be

viewed at wileyonlinelibrary.com]
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1. Height map: a local 2.5D map containing the elevation of the

obstacles near the actor;

2. Current shot type: four discrete values corresponding to the

current relative position of the UAV with respect to the actor;

3. Current shot count: number of time steps the current shot type has

been executed consecutively.

We assume that states evolve according to the system dynamics:

st + 1 ~ p(st, at). Finally, we define the artistic reward Rart(vt) where

vt(st, at) = {I1, I2,…, Ik} is the video taken after the UAV executed

action at at state st. Our objective is to find the parameters of the

optimal policy, which maximizes the expected cumulative reward:

 ∑* =
⎡

⎣
⎢ ( )

⎤

⎦
⎥

=

R varg max ,
t

T

t
1

artθ
θ

(20)

where the expectation accounts for all randomness in the model and

the policy. A major challenge for solving Equation (20) is the difficulty of

explicitly modeling the state transition function p(st, at). This function is

dependent on variables such as the quadrotor and actor dynamics, the

obstacle set, the motion planner’s implicit behavior, the quadrotor, and

camera gimbal controllers, and the disturbances in the environment. In

practice, we cannot derive an explicit model for the transition

probabilities of the MDP. Therefore, we use a model‐free method for

the RL problem, using an action‐value function Q(ct, at) to compute the

artistic value of taking action at given the current context ct:

∑( ) = [ ( ( ))| ]
′=

′ ′Q c a R v c a c a, , , .t t
t t

T

t t t tartπθ (21)

The large size and complexity of the state space for our

application motivates us to use a deep neural network with

parameters θ to approximate Q: Q(ct, at) ≈ f(ct, at, θ) (Mnih et al.,

2013; Sutton & Barto, 1998).

8.2 | Reward definition

Now we define the artistic reward function Rart. At a high level, we

define the following basic desired esthetical criteria for an incoming

shot sequence:

• Keep the actor within camera view for as much time as possible;

• Maintain the tilt viewing angle θt within certain bounds; neither

too low nor too high above the actor;

• Vary the relative yaw viewing angle over time, to show

different sides of the actor and backgrounds. Constant changes

keep the video clip interesting. However, too frequent changes

do not leave the viewer enough time to get a good overview of

the scene;

• Keep the drone safe, since collisions at a minimum destabilize

the UAV and usually cause complete loss of actor visibility due

to a crash.

While these basic criteria represent essential esthetical rules,

they cannot account for all possible esthetical requirements. The

evaluation of a movie clip can be highly subjective, and depend on the

context of the scene and background of the evaluator. Therefore, in

this study we compare two different approaches for obtaining

numerical reward values. In the first approach, we hand‐craft an

arithmetical reward function Rart, which follows the basic esthetics

requirements outlined above. In addition, we explore an alternative

approach for obtaining Rart directly from human supervision. Next,

we describe both methods.

8.2.1 | Hand‐crafted reward

The reward calculation from each control time step involves the

analysis and evaluation of each frame of the video clip. Since our

system operates with steps that last 6 s, the reward value depends on

the evaluation of 180 frames, given that images arrive at 30 Hz. We

define Rframe as the subreward relative to each frame, and compute it

using the following metrics:

Shot angle

Rframe
shot considers the current UAV tilt angle θrel in comparison with an

optimal value θopt = 15∘ and an accepted tolerance θtol = ±10∘ around

it.2 The shot angle subreward decays linearly and symmetrically

between 1.0 and 0.0 from θopt to the tolerance bounds. Out of the

bounds, we assign a negative penalty of = −R 0.5frame
shot .

Actor’s presence ratio

Actor’s presence ratio considers the screen space occupied by the

actor’s body. We set two bounds prmin = 0.05 and prmax = 0.10 based

on a desired long‐shot scale, actor size of 1.8m, and the camera’s

intrinsic matrix. If the presence ratio lies within the bounds, we set

the value of =R Rframe frame
shot . Otherwise, this parameter indicates that

the current frame contains a very low esthetics value, with the actor

practically out of the screen or occupying an exorbitant proportion of

it. In that case, we set a punishment Rframe = −0.5.

We average the resulting Rframe over all frames present in one

control step to obtain an intermediate reward = ∑
=

R R
N i

N
step

1
1 frame,i.

Next, we consider the interaction between consecutive control steps to

discount Rstep using a third metric: shot type duration.

Shot type duration

It considers the duration of the current shot type, given by the count

of steps c in which the same action was selected sequentially. We use

the heuristic that the ideal shot type has a length 12 s, or copt = 2 time

steps3, and define a variable discount parameter αc, as seen in

Figure 16. High repetition counts are penalized quadratically to

maintain the viewers' interest in the video clip.

2The optimal value and bounds were determined by using standard shot parameters for

aerial cinematography.

3This heuristics choice was based on informal tests with shot switching frequencies.
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Equation (22) shows how we obtain the final artistic reward Rart

for the current movie clip. If Rstep is positive, αc serves as a discount

factor, with the aim of guiding the learner towards the optimal shot

repetition count. In the case of negative Rstep, we multiply the reward

by the inverse αc, with the objective of accentuating the penalization

and to incentivize the policy to quickly recover from executing bad

shot types repetitively.

=
⎧

⎨
⎩

⋅ ≥

R

R R

R

, if 0,

, otherwise.

c

c

art

step step

step

α

α

(22)

In the eventual case of a UAV collision during the control step, we

override the reward calculation procedure to only output a negative

reward of Rart = −1.0.

Human supervision reward

We also explore a reward scheme for video segments based solely on

human evaluation. We create an interface (Figure 17) in which the

user gives an esthetics score between 1 (worst) and 5 (best) to the

video generated by the previous shot selection action. The score is

then linearly mapped to a reward Rart between −0.5 and 1.0 to

update the shot selection policy in the RL algorithm. In the case of a

crash during the control step, we override the user’s feedback with a

penalization of Rart = −1.0.

8.3 | Implementation details

Our deep Q‐network (DQN) architecture is composed of different

linear layers that combine the state inputs, as seen in Figure 18. We

use ReLU functions after each layer except for the last, and use the

Adam optimizer (Kingma & Ba, 2014) with Huber loss (Huber, 1964)

for creating the gradients. We use an experience replay (ER) buffer

for training the network, such as the one described by Mnih

et al. (2015).

9 | EXPERIMENTAL RESULTS

In this section, we detail integrated experimental results, followed by

detailed results on each subsystem.

9.1 | Integrated system results

We conducted a series of field trials to evaluate our integrated system in

real‐life conditions. We used a large open facility named Gascola in Penn

Hills, PA, located about 20min east of Pittsburgh, PA. The facility has a

diverse set of obstacle types and terrain types such as several off‐road
trails, large mounds of dirt, trees, and uneven terrain. Figure 19 depicts

the test site and shows the different areas where the UAV flew during

experiments. We summarize the test’s objectives and results in Table 3,

and indicate which results explain our initial hypotheses from Section 4.1.

Figure 20 summarizes our experiments conducted with fixed shot

types. We employ a variety of shot types and actors, while operating in a

wide range of unstructured environments such as open fields, in

proximity to a large mound of dirt, on narrow trails between trees and

on slopes. In addition, Figure 21 provides a detailed time‐lapse of how the

planner's trajectory output evolves during flight through a narrow trail

between trees (Figure 22).

Figure 23 shows experiments where we employed the online

automatic artistic selection module. The in‐depth results of this

module are described in Section 9.4.

We also summarize our integrated system’s runtime performance

statistics in Table 4, and discuss details of the online mapping

performance in Figure 22. Videos of the system in action can be found

attached to the submission, or online at https://youtu.be/ookhHnqmlaU.

From the field experiments, we verify that our system achieved all

system‐level objectives in terms of safely and robustly executing a

F IGURE 16 Values of the variable discount parameter αc over shot
repetition count c [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 17 Evaluators rate video clips during the training
procedure using an interface on the screen [Color figure can be
viewed at wileyonlinelibrary.com]
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diverse set of aerial shots with different actors and environments. Our

data also confirms the questions raised to validate our hypotheses:

onboard sensors and computing power sufficed to provide smooth

plans, producing artistically appealing images.

Next we present detailed results on the individual subsystems of

the aircraft.

9.2 | Visual actor localization and heading
estimation

Here we detail data set collection, training, and testing of the

different subcomponents of the vision module. We summarize the

vision‐specific test’s objectives and results in Table 5.

9.2.1 | Object detection network

Data set collection

We trained the network on the COCO data set (Lin et al., 2014), and

fine‐tuned it with a custom aerial filming data set. To test, we

manually labeled 120 images collected from our aerial filming

experiments, with bounding box over people and cars.

Training procedure

We trained and compared two architectures: one based on Faster‐
RCNN, another on SSD. As mentioned in Section 5, we simplify feature

extraction with MobileNet‐based structure to improve efficiency. First,

we train both structures on the COCO dataset. While the testing

F IGURE 18 DQN architecture consisting of fully connected layers. Each portion of state is first fed to separate mini‐networks of two layers.
Then, the outputs of these are combined in three consecutive layers whose output is the Q values

F IGURE 19 Testing facility. The middle figure shows a top‐down satellite view of testing terrain, overlayed with unmanned aerial vehicle positions

from different trials. We accumulated over 2 hr of flight time and a total distance of almost 6 km. The side figures show the diverse types of terrains in
our experiments. The figures also depict different actors and different seasons [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 Objectives and results for integrated experiments

Objectives Results

Stay safe among unstructured obstacles sensed online (addresses

Hyp. 1)

Avoided all obstacles successfully, including trees, dirt mound, slopes, posts.

See Figures 20–21.

Avoid occlusions among any obstacle shape (addresses Hyp. 1) Planner maintained actor visibility. See Figure 20. More results in Section 9.3.

Process data fully onboard (addresses Hyp. 1) Data processed solely on onboard computer. Table 4 and Figure 22 show

system statistics.

Operate with different types of actors at different speeds

(addresses Hyps. 2 and 3)

Person, car, bikes shot at high‐speed chases. See Figures 20–23.

Execute different shot types (addresses Hyp. 3) Successful recording of back, right, front, circling shots (Figure 20). Smooth

shot transitions (Figure 23).

Automatically select artistically meaningful shot types (addresses

Hyp. 3)

Policy adapted to current context to produce a visually esthetic video

(Figure 23).

F IGURE 20 Field results with different fixed shot types in multiple environment types, following different actor types. The UAV trajectory (red)
tracks the actor’s forecasted motion (blue) and stays safe while avoiding occlusions from obstacles. We display accumulated point clouds of LiDAR hits
and the occupancy grid: (a) Back shot following runner in narrow tree trail; (b) Right‐side shot following a runner close to dirt mound; (c) Circular shot on

person close to dirt mound; (d) Right‐side shot below the 3D structure of an electric wire. Note that LiDAR registration is noisy close to the pole in a row
due to large electromagnetic interference with the UAV’s compass; (e) Right‐side shot following car close to dirt mound; (f) Frontal shot on biker going
downhill on a trail with tall trees. UAV, unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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performance is good on the COCO testing data set, the performance

shows a significant drop, when tested on our aerial filming data. The

network has a low recall rate (lower than 33%) due to the big angle of

view, distant target, and motion blur. To address the generalization

problem, we augmented the training data by adding blur, resizing and

cropping images, and modifying colors. After training on a mixture of

COCO data set (Lin et al., 2014) and our own custom data set as

described in Section 5, Figure 24 shows the recall‐precision curve of

the two networks when tested on our filming testing data. The SSD‐
based network has difficulties detecting small objects, an important

need for aerial filming. Therefore, we use Faster‐RCNN‐based network

in our experiments and set the detection threshold to precision = 0.9,

as shown with the green arrow in Figure 24.

9.2.2 | HDE network

Data set collection

We collected a large number of image sequences from various

sources. For the person HDE, we used two surveillance data sets:

VIRAT (Oh et al., 2011) and DukeMCMT (Ristani et al., 2016), and

one action classification data set: UCF101 (Soomro, Zamir, & Shah,

2012). We manually labeled 453 images in the UCF101 data set as

ground‐truth HDE. As for the surveillance data sets, we adopted a

semiautomatic labeling approach where we first detected the actor in

every frame, then computed the ground‐truth heading direction

based on the derivative of the subject’s position over a sequence of

consecutive time frames. For the car HDE we used two surveillance

data sets, VIRAT, and Ko‐PER (Strigel, Meissner, Seeliger, Wilking, &

Dietmayer, 2014), in addition to one driving data set, PKU‐POSS (C.

Wang et al., 2016). Table 6 summarizes our data.

F IGURE 21 Detailed time‐lapse of back shot following a runner in a narrow trail with trees. As the unmanned aerial vehicle approaches the
trees at t = 6 s, the trajectory bends to keep the vehicle safe, maintain target visibility, and follow the terrain’s downward inclination [Color

figure can be viewed at wileyonlinelibrary.com]

F IGURE 22 Incremental distance transform computation time

over flight time. The first operations take significantly more time
because of our map initialization scheme where all cells are initially
considered as unknown instead of free, causing the first laser scans

to update a significantly larger number of voxels than later scans.
During calculation the planner is not blocked: it can still access TSDT
values from the latest version of . TSDT, truncated signed distance

transform [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 23 Field test results using the online artistic shot selection module. UAV trajectory is shown in red, actor motion forecast in blue,
and desired shot reference in pink. The UAV initially does a left side shot at t = 0 s in the open field, but as a line of trees appear, it switches to a

back shot at t = 12 s. When an opening appears among the tree lines, the UAV selects a left‐side shot again at t = 27 s, and when the clearance
ends, the module selects a back shot again. UAV, unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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Training the network

We first train the HDE network using only labeled data from the data

sets shown in Table 6. Rows 1–3 of Table 7 display the results. Then,

we fine‐tune the model with unlabeled data to improve generalization.

We collected 50 videos, each contains approximately 500

sequential images. For each video, we manually labeled six images.

The HDE model is finetuned with both labeled loss and continuity

loss, same as the training process on the open accessible data sets.

We qualitatively and quantitatively show the results of HDE using

semisupervised finetuning in Figure 25 and Table 7. The experiment

verifies our model could generalize well to our drone filming

task, with an average angle error of 0.359 rad. Compared to pure

supervised learning, utilizing unlabeled data improves generalization

and results in more robust and stable performance.

Baseline comparisons

We compare our HDE approach against two baselines. The first

baseline Vanilla‐CNN is a simple CNN inspired by Choi, Lee,

and Zhang (2016). The second baseline CNN‐GRU implicitly

learns temporal continuity using a GRU network inspired by P.

Liu, Liu, and Ma (2017). One drawback for this model is that

although it models the temporal continuity implicitly, it needs

large number of labeled sequential data for training, which is very

expensive to obtain.

We employ three metrics for quantitative evaluation: (a) Mean

square error (MSE) between the output (cosθ, sinθ) and the ground

truth ( ˆ ˆ )cos , sinθ θ . (b) Angular difference (AngleDiff) between the

output and the ground truth. (c) Accuracy obtained by counting the

percentage of correct outputs, which satisfies AngleDiff < π/8. We

use the third metric, which allows small error, to alleviate the

ambiguity in labeling human heading direction.

Vanilla‐CNN (Choi et al., 2016) and CNN‐GRU (P. Liu et al., 2017)

baselines trained on open datasets do not transfer well to drone

filming data set with accuracy below 30%. Our SSL‐based model

trained on open data sets achieves 48.7% accuracy. By finetuning on

labeled samples of drone filming, we improve this to 68.1%. Best

performance is achieved by finetuning on labeled and unlabeled

sequences of the drone filming data with accuracy of 72.2% (Table 7).

Reduction in required labeled data using SSL

Following Section 5, we show how SSL can significantly decrease the

number of labeled data required for the HDE task.

In this experiment, we train the HDE network on the DukeMCMT

data set, which consists of 274 k labeled images from eight different

surveillance cameras. We use the data from seven cameras for

TABLE 4 System statistics recorded during flight time on the
onboard computer

System Module

CPU

Thread
(%)

RAM
(MB)

Runtime
(ms)

Target
freq. (Hz)

Vision Detection 57 2,160 145

Tracking 24 25 14.4 15

Heading 24 1,768 13.9

KF 8 80 0.207

Mapping Grid 22 48 36.8

TSDF 91 810 100–6,000 10

LiDAR 24 9 100

Planning Planner 98 789 198 5

Controls DJI SDK 89 40 NA 50

Shot selection DQN 4 1,371 10.0 0.16

TABLE 5 Objectives and results for vision‐specific experiments

Objectives Results

Compare object detection network architectures Faster‐RCNN showed significantly better performance than SSD architecture

(Figure 24).

Compare supervised and semisupervised methods for

heading estimation

Semisupervised method has smoother output and higher accuracy (Table 7 and

Figure 25).

Analyze the amount of labeled data needed for

semisupervised training

Loss increased by less than ~8% when we trained the model with 1/10 of labeled

data (Figure 26).

Validate integrated 3D pose estimator using image

projections

Error of less than 1.7 m in estimated actor path length over a 40m long ground‐
truth actor trajectory (Figure 27).

F IGURE 24 Precision recall curve for object detection. The results
are tested on the filming testing data, which contains many challenging
cases. R‐CNN, R‐convolutional neural network; SSD, single‐shot detector
[Color figure can be viewed at wileyonlinelibrary.com]
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training, and one for testing (about 50 k). Figure 26 compares the

result from the proposed semisupervised method with a supervised

method using a different number of labeled data. We verify that by

utilizing unsupervised loss, the model generalizes better to the

validation data than the one with purely supervised loss.

As mentioned, in practice, we only use 50 unlabeled image

sequences, each containing approximately 500 sequential images,

and manually labeled 300 of those images. We achieve comparable

performance with purely supervised learning methods, which require

more labeled data.

9.2.3 | 3D pose estimation

Based on the detected bounding box and the actor’s heading

direction in 2D image space, we use a ray‐casting method to

calculate the 3D pose of the actor, given the online occupancy map

and the camera pose. We assume the actor is in an upward pose, in

which case the pose is simplified as ( )x y z, , , a
wψ , which represents the

position and orientation in the world frame.

We validate the precision of our 3D pose estimation in two

field experiments where the drone hovers and visually tracks the

actor. First, the actor walks between two points along a straight

line, and we compare the estimated and ground‐truth path

lengths. Second, the actor walks in a circle at the center of a

football field, and we compute the errors in estimated position

and heading direction. Figure 27 shows our estimation error is

less than 5.7%.

9.3 | Planner evaluation

Next we present detailed results on different aspects of the

UAV’s motion planner. Table 8 summarizes the experiments’

objectives and results.

9.3.1 | Ground‐truth obstacle map versus online
map

We compare average planning costs between results from a real‐life test

where the planner operated while mapping the environment in real‐time

with planning results with the same actor trajectory but with full

knowledge of the map beforehand. Results are averaged over 140 s of

flight and approximately 700 planning problems. Table 9 shows a small

increase in average planning costs with an online map, and Figure 28

shows that qualitatively both trajectories differ minimally. The planning

time, however, doubles in the online mapping case due to mainly two

factors: extra load on CPU from other system modules, and delays

introduced by accessing the map that is constantly being updated.

Nevertheless, computation time is low enough such that the planning

module can still operate at the target frequency of 5Hz.

Ground‐truth actor pose versus the noisy estimate

We compare the performance between simulated flights where the

planner has full knowledge of the actor’s position versus artificially noisy

estimates with 1m amplitude of random noise. The qualitative

TABLE 6 Data sets used in heading direction estimation study

Data set Target GT No. of Seqs No. of Imgs

VIRAT Car/person MT* 650 69,680

UCF101 Person HL(453)* 940 1,18,027

DukeMCMT Person MT* 4,336 2,74,313

Ko‐PER Car ✓ 12 18,277

PKU‐POSS Car ✓ – 28,973

TABLE 7 Semisupervised fine tuning results

Method MSE loss

AngleDiff

(rad) Accuracy (%)

Vanilla‐CNN w/o

finetune

0.53 1.12 26.67

CNN‐GRU w/o

finetune

0.5 1.05 29.33

SSL w/o finetune 0.245 0.649 48.7

SL w/finetune 0.146 0.370 68.1

SSL w/finetune 0.113 0.359 72.2

Abbreviations: CNN, convolutional neural network; MSE, mean square

error; SL, supervised learning; SSL, semisupervised learning.

F IGURE 25 Three models are tested on the sequential data. Two
testing sequences are shown in this figure. The top row of each testing
sequence shows the results that directly employ the model trained on
other open accessible data sets to the aerial filming task. It generalizes

poorly due to the distribution difference. The middle row and bottom
row show the results after finetuning the model on the filming data with
and without continuity loss, respectively. The model using continuity loss

for finetuning (bottom row) outputs more accurate and smooth results.
SL, supervised learning; SSL, semisupervised learning [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 26 The top row shows training and validation loss for supervised learning using different number of labeled data. The

validation performance drops from 0.13 to 0.22, when decreasing the number of labeled data from 100% to 1%. The bottom row shows
results with semisupervised learning. The validation losses are 0.13, 0.14, and 0.17 respectively for 100%, 10%, and 1% labeled data
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 27 Pose and heading estimation results. (a) Actor walks on a straight line from points A–B–A. Ground‐truth trajectory length is
40.6 m, while the estimated motion length is 42.3 m. (b) The actor walks along a circle. Ground‐truth diameter is 18.3 m, while the estimated
diameter from ray‐casting is 18.7 m. Heading estimation appears tangential to the ground circle [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 8 Objectives and results for detailed motion planner experiments

Objectives Results

Performance comparison between online vs. ground‐truth map Similar path quality, with increase in planning time. See Figure 28 and

Table 9.

Performance comparison between noisy actor forecast vs. ground‐truth
actor positioning

Similar path quality: smoothness cost handles noisy inputs. See

Figure 29.

Confirm ability to operate in full 3D environments Can fly under 3D obstacles, not only height maps. See Figure 20d.

Performance comparison between different planning time horizons Longer horizons significantly improve path quality. See Figure 30 and

Table 10.

Test impact of occlusion cost function on actor visibility Occlusion cost significantly improves path quality. See Figures 32 and

31, and Table 11.
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comparison with the actor’s ground‐truth trajectory shows close

proximity of both final trajectories, as seen in Figure 29.

Operation on unstructured 3D map

As seen in Figure 20d, our current system is able to map and avoid

unstructured obstacles in 3D environments such as wires and poles. This

capability is a significant improvement over previous work that only deals

with ellipsoidal obstacle representations (Huang, Gao, et al., 2018;

Joubert et al., 2016; Nägeli et al., 2017), or a height map assumption

(Bonatti et al., 2018).

Advantage of longer planning horizons

We evaluate the overall system behavior when using different

planning time horizons between 1 and 20 s, as seen in Table 10. Short

horizons reason myopically about the environment, and cannot

render robust and safe behavior in complex scenes, thus increasing

the normalized cost per time length of the resulting trajectory.

Figure 30 displays the qualitative difference between trajectories,

keeping all variables except planning horizon constant.

Qualitative role of the occlusion cost function

For this experiment, unlike the tests with visual actor localization, we

detect the actor using a ground‐truth GPS tag. We set up the motion

planner to calculate the UAV paths with and without the occlusion cost

function, keeping all other scenario variables equal. As seen in Figure 31,

our proposed occlusion cost significantly improves the esthetics of the

resulting image, keeping the actor visibility. In addition to esthetics,

maintaining actor visibility is a vital feature of our architecture, allowing

vision‐based actor localization.

The quantitative role of the occlusion cost function

We evaluate our planning algorithm on environments with increasing

levels of randomized clutter, as seen in Figure 32. Table 11 summarizes

the planner performance in different environments in terms of actor

visibility and the average distance to the artistically desired trajectory. By

using the occlusion cost function, we improve actor visibility by over 10%

in comparison with pure obstacle avoidance in environments with 40

random spheres; however, the trade‐off is an increase in the average

distance to the desired artistic trajectory.

These detailed results allow us to draw insights into the planner

performance under different conditions: it can operate smoothly, in full

3D maps, even under the noise of real‐time environment mapping and

noisy actor inputs. We can also verify the importance of the efficient

optimization algorithm for planning: by allowing longer time horizons, we

can generate significantly higher quality plans. Finally, we demonstrate

the essential role of our occlusion cost, which is defined for arbitrary

obstacle shapes in the environment, in maintaining actor visibility.

9.4 | Artistic shot selection

Next, we present detailed results on training and testing the artistic

shot selection module, as well as experiments that provide insights to

understand which artistic concepts this subsystem is learning.

Table 12 summarizes our test objectives and results.

TABLE 9 Performance comparison between ground‐truth and
online map

Planning

condition Avg. plan time (ms) Avg. cost Median cost

Ground‐truth map 32.1 0.1022 0.0603

Online map 69.0 0.1102 0.0825

F IGURE 28 Performance comparisons between planning with full
knowledge of the map (yellow) vs. with online mapping (red), displayed
over the ground truth map grid. Online map trajectory is less smooth due
to imperfect LiDAR registration and new obstacle discoveries as the

flight progresses [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 29 Performance comparison between planning with the
perfect ground truth of the actor’s location (red) vs. noisy actor
estimate with artificial noise of 1 m amplitude (yellow). The planner is

able to handle noisy actor localization well due to smoothness cost
terms, with a final trajectory similar to the ground‐truth case [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 10 Performance of motion planner with varying planning

time horizons for the environment shown in Figure 30

Planning horizon length [s] 1.0 5.0 10.0 20.0

Normalized trajectory cost (J/tf) 0.0334 0.0041 0.0028 0.0016

Computing time (ms) 0.0117 0.0131 0.0214 0.0343

Note: Longer planning horizons allow better reasoning for safety and

occlusion avoidance, lowering the normalized planning cost. However,

longer horizons naturally increase planning computing time.
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We trained our agent exclusively in simulation, using the

Microsoft AirSim release (see Section 4.4). We organize our

environments in three categories:

• BlockWorld: It is generated from a height map, and the actor walks

on a path with alternating blocks on the left and right sides. Blocks

have varying heights and lengths (Figure 33a).

• BigMap: It is generated from a height map, and significantly

more complex. It is separated into three zones: one that

resembles the BlockWorld environment, a second zone with

alternating pillars, and a third zone with different shapes of

mound‐like structures (Figure 33b).

• Neighborhood: Unlike the two previous height maps, this environ-

ment is a photo‐realistic rendering of a suburban residential area.

The actor walks among structures like streets, houses, bushes,

trees, and cars (Figure 33c).

9.4.1 | Learning an artistic policy

Hand‐crafted reward

Using the hand‐crafted reward definition from Section 8, we train a

total of six policies in different environments. For all policies except

F IGURE 30 Planner behavior with different time horizons of 1 (a), 5 (b), 10 (c), and 20 (d) seconds for the same actor trajectory and
environment. The shortest time horizon of 1 s is not sufficient for the planner to find a trajectory that avoids the mound, and the vehicle gets

stuck in a bad local minimum of solutions. Longer horizons let the UAV plan more intelligent trajectories, reasoning about obstacle shapes long
before the UAV reaches those positions. UAV, unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 31 Comparison of planning (a) without and (b) with occlusion cost function in a special setup where actor positioning comes from a
GPS tag. The occlusion cost function significantly improves the quality of the camera image in comparison with pure obstacle avoidance, for
same shot type [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 32 A randomized environment with obstacles to evaluate planner robustness. Unmanned aerial vehicle trajectory initialization

shown in blue, actor trajectory in purple, and planner iterations vary from red to green (final solution). (a) Solution including occlusion cost
function and (b) pure obstacle avoidance [Color figure can be viewed at wileyonlinelibrary.com]
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Neighborhood 1 roam, the actor walks along a predefined path. We

define each episode as a concatenation of five consecutive time steps,

each with a duration of 6 s, and we train each policy between 300 and

2,000 episodes, depending on the complexity of the environment:

• BlockWorld 1 and 2: Trained in different randomized BlockWorld

environments, BW1 and BW2, for 300 episodes.

• BigMap: Trained in a randomized BigMap environment, BM, for

1,500 episodes.

• Neighborhood 1 and 2: Trained in different sections of the Neighbor-

hood environment, NH1 and NH2. Trained for 500 episodes.

• Neighborhood roam: Trained in the entirety of the Neighborhood

environment NH, with actor walking in random motion, for 2,000

episodes.

We test all policies in all environments to evaluate generalizability.

Table 13 summarizes the quantitative results. As expected, all policies

perform better than random choice, and we achieve highest testing

rewards in the same environments the policies were trained in. We also

verify that the best generalization performance occurs when policies are

trained and tested on the same environment category. It is interesting to

note that policies trained on the neighborhood environments tested on

BigMap perform significantly better than those trained on BlockWorld,

likely due to the simple geometry of the BlockWorld obstacles.

Figures 34 and 36 show examples of trajectories generated with

trained policies. In addition, Figure 35 shows a heatmap with different

actions, providing insights into the learned policy’s behavior. Qualitatively,

we observe that the learned behavior matches the intended goals:

• Keeps the actor in view by avoiding drastic shot mode switches

between opposite positions such as left and right or front and back,

which often cause visual loss of the actor;

• Switches shot types regularly to keep the viewer’s interest;

• Avoids flying above high obstacles to keep the shot angle within

desirable limits;

• Avoids high obstacles to maintain aircraft safety.

Human‐generated rewards

Using the interface described in Section 8, we use human esthetics

evaluations as rewards to train two new policies in the BlockWorld and

Neighborhood environments for 300 and 500 episodes, respectively.

Comparisons between both reward schemes are presented next.

9.4.2 | User study results

We asked 10 participants to watch 30 s video clips taken from

four different policies in five different scenes. Each participant

F IGURE 33 Rendering and height maps of AirSim environments with training routes. (a) BlockWorld 1 (red) and BlockWorld 2 (blue); (b)
Bigmap (yellow); (c) Neighborhood 1 (orange) and Neighborhood 2 (purple) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 11 Evaluation of motion planner performance in the
randomized environment from Figure 32

Success metric

Cost

functions

No. of spheres in environment

1 20 40

Actor visibility

along

trajectory (%)

Jocc + Jobs 99.4 ± 2.2 94.2 ± 7.3 86.9 ± 9.3

Jobs 98.8 ± 3.0 87.1 ± 8.5 75.3 ± 11.8

Avg. dist. to

ξshot (m)

Jocc + Jobs 0.4 ± 0.4 6.2 ± 11.2 10.7 ± 13.2

Jobs 0.05 ± 0.1 0.3 ± 0.2 0.5 ± 0.3

Note: Statistics computed using 100 random configurations for each

environment complexity level.
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ranked clips from most to least visually pleasing, and wrote open‐
ended comments on each clip. We chose two scenes from the

BlockWorld and three from the Neighborhood environments, and

compared the highest‐performing hand‐crafted reward policy for

each environment against the human‐generated reward policy. In

addition, we included a constant back shot policy and a random

action policy for comparison.

Table 14 summarizes the user study results, and Figure 36

shows the best‐rated drone trajectories for each scene. As seen

in Table 14, the trained policies using both reward schemes have

higher ratings in all scenes than the random or constant back

shot policies.

On average, the hand‐crafted rewards produced policies were

ranked better than those trained with human‐defined rewards,

although participants’ opinions were the opposite in a few cases. We

also summarize the participant’s comments on the clips:

• All participants criticize the back shot policy as “boring” or

“unexciting”;

• All participants mentioned that the random policy loses view of the

actor too often;

• The most common esthetics complaint is due to the loss of actor

visibility;

• Participants often complained about too little camera movement

when only one shot type is used for the entire 30 s clip. They also

complained about camera movements being visually unpleasing

when the shot type changes at every time step (every 6 s);

• Participants frequently mention that they like to see an overview

of the surrounding environment and not only viewpoints with no

scene context where the actor’s background is just a building or

wall. Clips, where the UAV provides multiple viewpoints, were

positively marked;

• The human reward policy was often described as the most exciting

one, while the hand‐crafted reward policy was described as very

smooth.

The main perceived difference between the hand‐crafted
reward policy and the human reward policy was the consistency

of switching shots. While the former tries to switch shots every

two time steps (12 s) if not disturbed by an obstacle, the latter is

more irregular in timing. From the user studies, it is evident that a

more regular period that is neither too short nor too long

improves esthetic scores.

9.4.3 | Extended results in field experiments

We tested our trained policies in real‐life settings. Since these tests

were only focused on the shot selection module we operated using a

TABLE 12 Objectives and results for artistic shot selection

Objectives Results

Compare policy generalizability to different environments Learned policies generalized well to new unseen environments.

Table 13 compares performances.

Analyze role of specific environment context in policy behavior Policy learned to actively avoid potential occlusions and switch

often to keep video interesting (Figures 34–35).

Evaluate policies against baselines using real human esthetics in

user study

Our policy outperformed constant shot types or random actions

(Table 14 and Figure 36).

Transfer policy learned in simulation to real‐life environments We deployed the policy in additional field experiments (Figure 37).

TABLE 13 Average reward per time step

Policy test env. BW1 BW2 BM NH1 NH2

BlockWorld 1 0.3444 0.3581 0.3635 0.3622 0.2985

BlockWorld 2 0.3316 0.3718 0.3918 0.4147 0.3673

BigMap 0.2178 0.2506 0.5052 0.5142 0.5760

Neighborhood 1 0.1822 0.1916 0.4311 0.5398 0.5882

Neighborhood 2 0.0813 0.1228 0.4488 0.4988 0.5897

Neighborhood 1

roam

0.1748 0.1779 0.4394 0.5221 0.5546

Random choice −0.0061 0.0616 0.1944 0.2417 0.2047

Note: As expected, policies have the highest rewards when trained and

tested on the same environment (bold diagonal). The second‐best policy
for each environment is underlined and italicized.

F IGURE 34 Time‐lapse of drone trajectory during filming in a
photo‐realistic environment. Since the left‐hand side is occupied, the

drone switches from left to front and then right shot [Color figure
can be viewed at wileyonlinelibrary.com]
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premapped environment, differently than the integrated results from

Section 9.1 that uses online mapping. We filmed scenes using three

distinct policies: one trained with hand‐crafted rewards on the

BigMap environment, a second fixed back shot policy and a third

random policy. Figure 37 summarizes the results.

Similar to the simulation results, the random policy results in

constant loss of actor due to drastic position changes and

close proximity to obstacles. For example, a random action of

the right shot will cause the UAV to climb much above the actor if

it is too close to a large mound. The back shot policy, although

stable in vehicle behavior, results in visually unappealing movies.

Finally, our trained policy provides a middle ground, resulting in

periodic changes in the UAV viewpoint, while providing stable

visual tracking.

F IGURE 35 Visualization of the Q values of the DQN during testing corresponding to the four shot types. The more opaque a circle is, the
higher is the action’s Q value. The drone position before each decision is indicated by a blue ring around the drone. The drone starts on the right

side of the actor and switches to back shot mode to traverse a narrow passage (a) where it stays in the actor’s back for one‐time step (b). Finally,
it decides to switch to a left‐side shot once the obstacles are passed (c) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 14 Average normalized user‐study score of video clips between 0 (worst) and 10 (best)

Average Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Hand‐crafted reward 8.2 10.0 5.3 9.3 7.7 8.7

Human reward 7.1 5.0 9.0 6.0 7.7 8.0

Back shot 3.8 4.0 4.7 4.3 4.0 2.0

Random 0.9 1.0 1.0 0.3 0.7 1.3

Note: The best score for each scene is highlighted in bold.

F IGURE 36 Drone trajectories of the highest‐rated policies in the user study in Scenes 1–5 [Color figure can be viewed at wileyonlinelibrary.com]
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10 | DISCUSSION

In this section, we discuss lessons learned throughout the develop-

ment of our work, and also present comments on how our methods

can be used with different types of sensors and UAV platforms.

10.1 | Lessons learned

During the development of our autonomous aerial cinematogra-

pher platform, we learned several lessons and gained insights

into problem specificities, which we summarize below. We

expect these lessons to not only be useful to researchers in

the field of aerial vehicles, but also to generalize to other

related areas.

Cascading errors can destabilize the robot

Estimation errors in a module get amplified if used downstream in

decision‐making. For example, we learned that jerky UAV move-

ments lead to misregistration of camera pose, which leads to poor

actor detection. This in turn leads to poor actor prediction, which can

be off by meters. Unlike previous works that operate under highly

precise motion capture systems, in real scenarios, we observe that

controlling the camera orientation toward the position estimates

causes the robot to completely lose the actor. To mitigate this effect,

we chose to decouple motion planning, which uses the actor world

projection estimates, from camera control, which uses only object

detections on the current image as feedback. To validate the quality

of both threads independently, we performed statistical performance

evaluations, as seen throughout Section 9.

Long‐range sensors are beneficial to planning performance

The planner relies on the online map. Slow online map updates

slow down the planner. This typically happens when the robot

moves near large pockets of unknown areas, which triggers large

updates for the TSDT. We learned that a relatively long‐range
LiDAR sensor maps out a significantly larger area. Hence almost

always, the area near the robot is mapped out fully and the

planner does not have to wait for map updates to enter an

unknown region. While our system used a relatively large map of

250 × 250 × 100 m, significantly faster mapping‐planning fre-

quencies could be achieved with the use of a smaller local map.

Such change would likely be necessary with the use of shorter‐
range sensors like stereo pairs, which are common in commercial

aircraft due to their reduced price.

Semisupervised methods can improve learning generalization

While deep learning methods are ubiquitous in computer vision, they

rely on massive amounts of labeled data due to the complexity of the

model class. Moreover, these models do not generalize to varying

data distributions. We learned that one can reduce sample complex-

ity by enforcing regularization/additional structure. In our case, we

enforce temporal continuity on the network output. We show that a

combination of small labeled data set for supervisory loss and a large

unlabeled data set for temporal continuity loss is enough to

solve the problem. Exploring other regularization techniques such

F IGURE 37 UAV follows an actor while switching shot types autonomously with our trained policy: (a) UAV starts at the back of the actor;
(b) The mound’s presence on the right‐side of the actor leads to a left shot selection; (c) UAV switches to a frontal shot in the open area. UAV,

unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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as consistency between different sensory modalities is also an

interesting area to be investigated in the future.

Height estimate using IMU and barometer is not enough for long

operations

During extended vehicle operations (over 5–10min), we learned that

the UAV's height calculated by fusing IMU and barometer data drifts

significantly, especially after large vertical maneuvers. Inaccurate

height estimates degrade pointcloud registration, thereby degrading

the overall system performance. In the future, we plan to use LiDAR

or visual SLAM to provide more accurate 3D localization.

Real‐world noise reduces transferability of the artistic policy trained

in simulation

The noise present in real‐world testing conditions, in particular for the

map registration and actor localization, affected the results generated

by the policy that was trained purely in simulation using ground‐truth
data. Shot selection in simulation highly prioritized viewpoints that drew

the UAV away from tall obstacles, while in deployment we observed

that the drone avoided proximity to tall objects with a significantly

smaller frequency. In the future we will consider artificially adding noise

to simulations for better transferability, or training the artistic policy

with a combination of simulated and real‐life data.

10.2 | Adapting our work to different UAVs and
sensors

In this study, we employed a long‐range LiDAR sensor for mapping

the environment and a DJI M210 UAV as the base platform. Even

though we used relatively standard robotics development platforms

and sensors, researchers and developers who work on problems

similar to aerial cinematography may face different constraints in

terms of payload capacity, vehicle size, sensor modalities, and costs.

We argue that our problem formulation can be easily extended to

other contexts.

First, we argue that the LiDAR sensor used in the online

mapping module (Section 6) can be replaced by other sensors.

Stereo cameras and depth sensors, for example, can be light‐
weight and significantly cheaper alternatives. The incoming hits

for the mapping pipeline can then be acquired by using each pixel

from a depth image, or each match from the stereo pair. The main

advantage of LiDAR is the relatively long‐range, in the order of

hundreds of meters. When using lighter sensors, the developer

needs to take into account the new sensor range to keep the UAV

safe. They must consider the expected vehicle speed and the scale

of obstacles in the environment so that the planner can reason

about obstacles far from the UAV’s current position.

In addition, our system architecture is platform‐agnostic. Our

methods can easily be adapted to smaller or potentially cheaper

platforms. To do so, one only needs to care for the software interface

between the trajectory controller and the aircraft’s internal attitude

or velocity controller.

In the future, we hope to see our architecture extended to other

UAV types: our framework is not constrained to uniquely multirotors.

With the appropriate changes in the motion planner’s trajectory

parametrization and cost functions, our pipeline can also be

employed by fixed‐wing or hybrid aircraft. More generally, despite

the lower path dimensionality, even ground robots can employ the

same methodology for visually tracking dynamic targets.

11 | CONCLUSION

In this study, we presented a complete system for robust autonomous

aerial cinematography in unknown, unstructured environments while

following dynamic actors in unscripted scenes. Current approaches do

not address all theoretical and practical challenges present in real‐life
operation conditions; instead, they rely on simplifying assumptions such

as requiring ground truth actor position, using prior maps of the

environment, or only following one‐shot type specified before the flight.

To solve the entirety of the aerial cinematography, our system revolves

around two key ideas. First, we frame the filming task as an efficient

cost optimization problem, which allows trajectories with long time

horizons to be computed in real‐time, even under sensor noise. Second,

instead of using hand‐defined heuristics to guide the UAV’s motion, we

approach the artistic decision‐making problem as a learning problem

that can directly use human feedback.

We developed a system with four modules that work in parallel.

(a) A vision‐based actor localization module with motion prediction.

(b) A real‐time incremental mapping algorithm using a long‐range
LiDAR sensor. (c) A real‐time optimization‐based motion planner that

exploits covariant gradients to efficiently calculate safe trajectories

with long time horizons while balancing artistic objectives and

occlusion avoidance for arbitrary obstacle shapes. (d) Finally, a deep

RL policy for artistic viewpoint selection.

We offered extensive detailed experiments to evaluate the

robustness and real‐time performance of our system both in

simulation and real‐life scenarios. These experiments occur among

a variety of terrain types, obstacle shapes, obstacle complexities,

actor trajectories, actor types (i.e., people, cars, bikes) and shot types.

Based on our results, we identify several key directions for possible

future work. One clear direction is the extension of our theory to multi‐
drone, multiactor scenarios. This improvement can be achieved by the

addition of new cost functions that penalize inter‐drone collisions, inter‐
drone sight, and a metric for multiactor coverage. In addition, multiactor

scenarios require slight modification in the definition of artistic

parameters that define the desired artistic shot for our motion planner.

Another interesting direction to follow lies in the reconstruction of

dynamic scenes. While systems such as the CMU PanOptic Studio (Joo

et al., 2015) can precisely reconstruct scenes volumetrically in indoor and

static scenarios, to our knowledge, no current system offers a good

volumetric reconstruction of dynamic scenes in natural environments in

real‐life conditions. Lastly, we envision further research in learning the

artistic reasoning behind human choices. More broadly, as robotics

evolves, autonomous agents are required to operate in a large variety of
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tasks in proximity to humans, where success is in great part measured by

the ability of the robot to execute esthetic and human‐like behaviors. We

identify important related areas to cinematography, such as autonomous

driving and human–robot interaction, where fine nuances of human

behavior modeling are important for the development of autonomous

agents.
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APPENDIX A: DERIVATIONS OF PLANNING
COST FUNCTIONS

A.1 Smoothness cost

We can discretize Equation (8) to compute the smoothness for ξq:
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To simplify Equation (A1), we define: Δ =
−

t
t

n 1
f , a finite differentia-

tion operator K, and an auxiliary matrix e for the contour conditions:
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By manipulating the terms K, e, and Δt we obtain the auxiliary terms:
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Finally, we can analytically write the smoothness cost as a

quadratic objective:
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Since Jsmooth(ξq) is quadratic, we find analytic expressions for

its gradient and Hessian. Note that the Hessian expression does

not depend on the current trajectory, which is a property used

serve to speed up the optimization algorithm described in

Section 7.4:
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A.2 Shot quality cost

We can calculate Jshot in the discrete form
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By defining auxiliary matrices, we can also define a quadratic

expression
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and
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We can again find analytic expressions for the shot quality

gradient and Hessian, which is independent from the current

trajectory
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